首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Entity-Sensitive Attention and Fusion Network for Entity-Level Multimodal Sentiment Classification
【24h】

Entity-Sensitive Attention and Fusion Network for Entity-Level Multimodal Sentiment Classification

机译:实体敏感的关注和实体级多模式情绪分类的融合网络

获取原文
获取原文并翻译 | 示例

摘要

Entity-level (aka target-dependent) sentiment analysis of social media posts has recently attracted increasing attention, and its goal is to predict the sentiment orientations over individual target entities mentioned in users’ posts. Most existing approaches to this task primarily rely on the textual content, but fail to consider the other important data sources (e.g., images, videos, and user profiles), which can potentially enhance these text-based approaches. Motivated by the observation, we study entity-level multimodal sentiment classification in this article, and aim to explore the usefulness of images for entity-level sentiment detection in social media posts. Specifically, we propose an Entity-Sensitive Attention and Fusion Network (ESAFN) for this task. First, to capture the intra-modality dynamics, ESAFN leverages an effective attention mechanism to generate entity-sensitive textual representations, followed by aggregating them with a textual fusion layer. Next, ESAFN learns the entity-sensitive visual representation with an entity-oriented visual attention mechanism, followed by a gated mechanism to eliminate the noisy visual context. Moreover, to capture the inter-modality dynamics, ESAFN further fuses the textual and visual representations with a bilinear interaction layer. To evaluate the effectiveness of ESAFN, we manually annotate the sentiment orientation over each given entity based on two recently released multimodal NER datasets, and show that ESAFN can significantly outperform several highly competitive unimodal and multimodal methods.
机译:社交媒体帖子的实体级别(AKA目标依赖)情绪分析最近引起了越来越关注,其目标是预测用户职位中提到的各个目标实体的情感方向。此任务的大多数现有方法主要依赖于文本内容,但未能考虑其他重要的数据源(例如,图像,视频和用户配置文件),这可能会提高这些基于文本的方法。我们学习的观察激励<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>实体级多模式情绪分类< /斜体> 在本文中,并旨在探讨社交媒体帖子中实体级别情绪检测的图像的实用性。具体而言,我们为此任务提出了实体敏感的关注和融合网络(ESAFN)。首先,为了捕获模态动态,ESAFN利用有效的注意机制来生成实体敏感的文本表示,然后用文本融合层聚合它们。接下来,ESAFN使用面向实体的视觉注意机制学习实体敏感的视觉表示,然后是GETED机制来消除嘈杂的视觉上下文。此外,为了捕获模态动态,ESAFN进一步融合了与双线性交互层的文本和视觉表示。为了评估ESAFN的有效性,我们根据最近发布的多模式网集进行了三个基于每个给定的实体对每个给定实体的情感方向,并显示ESAFN可以显着优于几种高竞争的单峰和多模峰方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号