首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Cross-Lingual Transfer Learning of Non-Native Acoustic Modeling for Pronunciation Error Detection and Diagnosis
【24h】

Cross-Lingual Transfer Learning of Non-Native Acoustic Modeling for Pronunciation Error Detection and Diagnosis

机译:非本地声学建模的交叉语言转移学习发音错误检测和诊断

获取原文
获取原文并翻译 | 示例

摘要

In computer-assisted pronunciation training (CAPT), the scarcity of large-scale non-native corpora and human expert annotations are two fundamental challenges to non-native acoustic modeling. Most existing approaches of acoustic modeling in CAPT are based on non-native corpora while there are so many living languages in the world. It is impractical to collect and annotate every non-native speech corpus considering different language pairs. In this work, we address non-native acoustic modeling (both on phonetic and articulatory level) based on transfer learning. In order to effectively train acoustic models of non-native speech without using such data, we propose to exploit two large native speech corpora of learner's native language (L1) and target language (L2) to model cross-lingual phenomena. This kind of transfer learning can provide a better feature representation of non-native speech. Experimental evaluations are carried out for Japanese speakers learning English. We first demonstrate the proposed acoustic-phone model achieves a lower word error rate in non-native speech recognition. It also improves the pronunciation error detection based on goodness of pronunciation (GOP) score. For diagnosis of pronunciation errors, the proposed acoustic-articulatory modeling method is effective for providing detailed feedback at the articulation level.
机译:在计算机辅助的发音培训(上尉)中,大规模非本地语料库和人类专家注释的稀缺是对非原生声学建模的两个根本挑战。在上尉中最现有的声学建模方法是基于非本地语料库,而世界上有这么多的生活语言。收集和注释考虑不同语言对的每个非原生语音语料库是不切实际的。在这项工作中,我们根据转移学习地解决了非本机声学建模(兼术级别)。为了有效地培训非原生语音的声学模型而不使用这些数据,我们建议利用学习者的母语(L1)和目标语言(L2)的两个大型母语语言(L2)来模拟交叉现象。这种转移学习可以提供更好的非原生语音特征表示。日本演讲者学习英语的实验评估。我们首先展示所提出的声学 - 手机模型在非本机语音识别中实现了较低的单词错误率。它还基于发音(GOP)分数来提高发音错误检测。为了诊断发音误差,所提出的声学 - 关节式建模方法对于在关节水平提供详细反馈的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号