首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Detection of Nasalized Voiced Stops in Cleft Palate Speech Using Epoch-Synchronous Features
【24h】

Detection of Nasalized Voiced Stops in Cleft Palate Speech Using Epoch-Synchronous Features

机译:利用时元同步特征检测C裂语音中的鼻化浊音

获取原文
获取原文并翻译 | 示例

摘要

The presence of velopharyngeal dysfunction in individuals with cleft palate (CP) nasalizes the voiced stops. Due to this, voiced stops (/b/, d/, /g/) tend to be perceive like nasal consonants (/m/, /, /g/). In this work, a novel algorithm is proposed for the detection of nasalized voiced stops in CP speech using epoch-synchronous features. Speech regions corresponding to consonant and consonant-vowel transitions are segmented using the knowledge of glottal activity, syllable nucleus, low-frequency spectral dominance, and vowel onset point. The segmented regions are epoch-synchronously processed to analyze the spectral, spectrotemporal, excitation source, and periodicity characteristics of normal and nasalized voiced stops. Spectral and spectro temporal features are computed using single pole filter based time-frequency representation. The amplitude of Hilbert envelope of linear prediction residual, measured around the epoch is used to analyze the effect of nasalization on excitation source. Comparison of speech frames of successive inter-epoch intervals is carried out to analyze the periodicity characteristics. The proposed features are used to develop a support vector machine classifier for the classification of normal and nasalized voiced stops. Segmentation accuracy for the proposed knowledge based method is found to be better than the hidden Markov model based force-alignment approach. The detection rate of nasalized voiced stops is found to be high for the proposed epoch synchronous features than the conventional Mel-frequency cepstral coefficients.
机译:c裂(CP)患者存在咽咽功能障碍,使浊音停止。因此,发声的音符(/ b /,d /,/ g /)倾向于像鼻辅音(/ m /,/ n /,/ g /)一样被感知。在这项工作中,提出了一种新的算法,该算法使用历元同步特征来检测CP语音中的鼻音停止。使用声门活动,音节核,低频频谱优势和元音开始点的知识,对与辅音和辅音元音过渡相对应的语音区域进行分割。对分割的区域进行历时同步处理,以分析正常和鼻化浊音停止的频谱,频谱时间,激发源和周期性特征。使用基于单极点滤波器的时频表示来计算光谱和光谱的时间特征。在历元附近测得的线性预测残差的希尔伯特包络幅度用于分析鼻腔化对激发源的影响。进行连续历元间间隔的语音帧的比较,以分析周期性特征。拟议的功能用于开发支持向量机分类器,用于对正常的和经鼻的浊音停止进行分类。发现所提出的基于知识的方法的分割精度优于基于隐马尔可夫模型的力对准方法。对于建议的历元同步特征,发现鼻音浊音的检测率比常规的梅尔频率倒谱系数要高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号