首页> 外文期刊>IEEE transactions on audio, speech and language processing >A Bayesian Approach for Blind Separation of Sparse Sources
【24h】

A Bayesian Approach for Blind Separation of Sparse Sources

机译:稀疏源盲分离的贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

We present a Bayesian approach for blind separation of linear instantaneous mixtures of sources having a sparse representation in a given basis. The distributions of the coefficients of the sources in the basis are modeled by a Student$t$distribution, which can be expressed as a scale mixture of Gaussians, and a Gibbs sampler is derived to estimate the sources, the mixing matrix, the input noise variance and also the hyperparameters of the Student$t$distributions. The method allows for separation of underdetermined (more sources than sensors) noisy mixtures. Results are presented with audio signals using a modified discrete cosine transform basis and compared with a finite mixture of Gaussians prior approach. These results show the improved sound quality obtained with the Student$t$prior and the better robustness to mixing matrices close to singularity of the Markov chain Monte Carlo approach.
机译:我们提出了一种贝叶斯方法,用于在给定的基础上盲分离线性稀疏表示源。基础中源的系数分布由Student $ t $分布建模,该分布可以表示为高斯的比例混合,然后派生一个Gibbs采样器以估算源,混合矩阵,输入噪声方差以及Student $ t $分布的超参数。该方法可以分离不确定的(比传感器更多的源)嘈杂混合物。使用改进的离散余弦变换基础将结果与音频信号一起呈现,并与高斯先验方法的有限混合进行比较。这些结果表明,使用Student $ t $ prior可以获得更好的声音质量,并且可以更好地混合接近马尔可夫链蒙特卡罗方法的奇点的​​矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号