首页> 外文期刊>IEEE transactions on audio, speech and language processing >Adaptive Time Segmentation for Improved Speech Enhancement
【24h】

Adaptive Time Segmentation for Improved Speech Enhancement

机译:自适应时间分段,可改善语音增强

获取原文
获取原文并翻译 | 示例

摘要

Single-channel enhancement algorithms are widely used to overcome the degradation of noisy speech signals. Speech enhancement gain functions are typically computed from two quantities, namely, an estimate of the noise power spectrum and of the noisy speech power spectrum. The variance of these power spectral estimates degrades the quality of the enhanced signal and smoothing techniques are, therefore, often used to decrease the variance. In this paper, we present a method to determine the noisy speech power spectrum based on an adaptive time segmentation. More specifically, the proposed algorithm determines for each noisy frame which of the surrounding frames should contribute to the corresponding noisy power spectral estimate. Further, we demonstrate the potential of our adaptive segmentation in both maximum likelihood and decision direction-based speech enhancement methods by making a better estimate of the a priori signal-to-noise ratio (SNR)$xi$. Objective and subjective experiments show that an adaptive time segmentation leads to significant performance improvements in comparison to the conventionally used fixed segmentations, particularly in transitional regions, where we observe local SNR improvements in the order of 5 dB.
机译:单通道增强算法被广泛用于克服噪声语音信号的降级。语音增强增益函数通常由两个量来计算,即,噪声功率谱的估计值和噪声语音功率谱的估计值。这些功率谱估计的方差会降低增强信号的质量,因此经常使用平滑技术来减小方差。在本文中,我们提出了一种基于自适应时间分段确定噪声语音功率谱的方法。更具体地,所提出的算法为每个噪声帧确定周围的哪些帧应当对相应的噪声功率谱估计做出贡献。此外,通过更好地估计先验信噪比(SNR)$ xi $,我们证明了在最大似然法和基于决策方向的语音增强方法中自适应分割的潜力。客观和主观实验表明,与常规使用的固定分段相比,自适应时间分段可显着提高性能,尤其是在过渡区域中,在过渡区域中,我们观察到的本地SNR改善了5 dB左右。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号