首页> 外文期刊>IEEE transactions on audio, speech and language processing >Hidden Markov model-based packet loss concealment for voice over IP
【24h】

Hidden Markov model-based packet loss concealment for voice over IP

机译:IP语音的基于隐马尔可夫模型的丢包隐藏

获取原文
获取原文并翻译 | 示例

摘要

As voice over IP proliferates, packet loss concealment (PLC) at the receiver has emerged as an important factor in determining voice quality of service. Through the use of heuristic variations of signal and parameter repetition and overlap-add interpolation to handle packet loss, conventional PLC systems largely ignore the dynamics of the statistical evolution of the speech signal, possibly leading to perceptually annoying artifacts. To address this problem, we propose the use of hidden Markov models for PLC. With a hidden Markov model (HMM) tracking the evolution of speech signal parameters, we demonstrate how PLC is performed within a statistical signal processing framework. Moreover, we show how the HMM is used to index a specially designed PLC module for the particular signal context, leading to signal-contingent PLC. Simulation examples, objective tests, and subjective listening tests are provided showing the ability of an HMM-based PLC built with a sinusoidal analysis/synthesis model to provide better loss concealment than a conventional PLC based on the same sinusoidal model for all types of speech signals, including onsets and signal transitions.
机译:随着IP语音的激增,接收方的丢包隐藏(PLC)已成为确定服务语音质量的重要因素。通过使用信号和参数重复的启发式变化以及重叠相加插值来处理数据包丢失,传统的PLC系统在很大程度上忽略了语音信号统计演变的动态,可能会导致听觉上令人讨厌的伪像。为了解决这个问题,我们建议将隐马尔可夫模型用于PLC。通过跟踪语音信号参数演变的隐马尔可夫模型(HMM),我们演示了如何在统计信号处理框架内执行PLC。此外,我们展示了如何使用HMM为特定信号环境索引专门设计的PLC模块,从而产生信号依赖型PLC。提供了仿真示例,客观测试和主观听觉测试,这些结果表明,使用基于正弦分析/合成模型的基于HMM的PLC可以为所有类型的语音信号提供比基于相同正弦模型的常规PLC更好的隐蔽性,包括发作和信号过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号