首页> 外文期刊>IEEE transactions on audio, speech and language processing >Low-complexity source coding using Gaussian mixture models, lattice vector quantization, and recursive coding with application to speech spectrum quantization
【24h】

Low-complexity source coding using Gaussian mixture models, lattice vector quantization, and recursive coding with application to speech spectrum quantization

机译:使用高斯混合模型,晶格矢量量化和递归编码的低复杂度源编码,并将其应用于语音频谱量化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we use the Gaussian mixture model (GMM) based multidimensional companding quantization framework to develop two important quantization schemes. In the first scheme, the scalar quantization in the companding framework is replaced by more efficient lattice vector quantization. Low-complexity lattice pruning and quantization schemes are provided for the E8 Gossett lattice. At moderate to high bit rates, the proposed scheme recovers much of the space-filling loss due to the product vector quantizers (PVQ) employed in earlier work, and thereby, provides improved performance with a marginal increase in complexity. In the second scheme, we generalize the compression framework to accommodate recursive coding. In this approach, the joint probability density function (PDF) of the parameter vectors of successive source frames is modeled using a GMM. The conditional density of the parameter vector of the current source frame based on the quantized values of the parameter vector of the previous source frames is used to generate a new codebook for every current source frame. We demonstrate the efficacy of the proposed schemes in the application of speech spectrum quantization. The proposed scheme is shown to provide superior performance with moderate increase in complexity when compared with conventional one-step linear prediction based compression schemes for both narrow-band and wide-band speech.
机译:在本文中,我们使用基于高斯混合模型(GMM)的多维压扩量化框架来开发两个重要的量化方案。在第一种方案中,压扩框架中的标量量化被更有效的晶格矢量量化所取代。为E8 Gossett晶格提供了低复杂度的晶格修剪和量化方案。在中等到高比特率下,由于早期工作中采用了乘积矢量量化器(PVQ),因此所提出的方案可以弥补大部分的空间填充损失,从而提供了改进的性能,而复杂性却有所增加。在第二种方案中,我们概括了压缩框架以适应递归编码。在这种方法中,使用GMM对连续源帧的参数向量的联合概率密度函数(PDF)进行建模。基于先前源帧的参数矢量的量化值的当前源帧的参数矢量的条件密度用于为每个当前源帧生成新的码本。我们证明了所提出的方案在语音频谱量化应用中的功效。与针对窄带和宽带语音的传统的基于一步线性预测的压缩方案相比,所提出的方案显示出提供了优异的性能,并且复杂度有所增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号