首页> 外文期刊>IEEE transactions on audio, speech and language processing >Noise-Robust Automatic Speech Recognition Using a Predictive Echo State Network
【24h】

Noise-Robust Automatic Speech Recognition Using a Predictive Echo State Network

机译:使用预测回波状态网络的强噪声自动语音识别

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks have been shown to perform well in automatic speech recognition (ASR) tasks, although their complexity and excessive computational costs have limited their use. Recently, a recurrent neural network with simplified training, the echo state network (ESN), was introduced by Jaeger and shown to outperform conventional methods in time series prediction experiments. We created the predictive ESN classifier by combining the ESN with a state machine framework. In small-vocabulary ASR experiments, we compared the noise-robust performance of the predictive ESN classifier with a hidden Markov model (HMM) as a function of model size and signal-to-noise ratio (SNR). The predictive ESN classifier outperformed an HMM by 8-dB SNR, and both models achieved maximum noise-robust accuracy for architectures with more states and fewer kernels per state. Using ten trials of random sets of training/validation/test speakers, accuracy for the predictive ESN classifier, averaged between 0 and 20 dB SNR, was 81plusmn3%, compared to 61plusmn2% for an HMM. The closed-form regression training for the ESN significantly reduced the computational cost of the network, and the reservoir of the ESN created a high-dimensional representation of the input with memory which led to increased noise-robust classification.
机译:人工神经网络已被证明在自动语音识别(ASR)任务中表现良好,尽管它们的复杂性和过多的计算成本限制了它们的使用。最近,Jaeger引入了经过简化训练的递归神经网络,即回声状态网络(ESN),并在时间序列预测实验中表现出优于传统方法。我们通过将ESN与状态机框架相结合来创建预测性ESN分类器。在小词汇量ASR实验中,我们将预测ESN分类器的噪声鲁棒性能与隐马尔可夫模型(HMM)进行了比较,该模型是模型大小和信噪比(SNR)的函数。 ESN预测性分类器的信噪比优于HMM的信噪比(SNR)为8 dB,并且对于具有更多状态和每个状态更少内核的体系结构,这两个模型均实现了最大的鲁棒精度。使用十组训练/验证/测试说话者的随机试验,预测ESN分类器的准确度平均为0至20 dB SNR,为81plusmn3%,而HMM为61plusmn2%。 ESN的闭式回归训练显着降低了网络的计算成本,并且ESN的存储库创建了带有内存的输入的高维表示,从而提高了噪声鲁棒性分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号