首页> 外文期刊>IEEE transactions on audio, speech and language processing >Melody Extraction and Musical Onset Detection via Probabilistic Models of Framewise STFT Peak Data
【24h】

Melody Extraction and Musical Onset Detection via Probabilistic Models of Framewise STFT Peak Data

机译:通过逐帧STFT峰值数据的概率模型进行旋律提取和音乐起病检测

获取原文
获取原文并翻译 | 示例

摘要

We propose a probabilistic method for the joint segmentation and melody extraction for musical audio signals which arise from a monophonic score. The method operates on framewise short-time Fourier transform (STFT) peaks, enabling a computationally efficient inference of note onset, duration, and pitch attributes while retaining sufficient information for pitch determination and spectral change detection. The system explicitly models note events in terms of transient and steady-state regions as well as possible gaps between note events. In this way, the system readily distinguishes abrupt spectral changes associated with musical onsets from other abrupt change events. Additionally, the method may incorporate melodic context by modeling note-to-note dependences. The method is successfully applied to a variety of piano and violin recordings containing reverberation, effective polyphony due to legato playing style, expressive pitch variations, and background voices. While the method does not provide a sample-accurate segmentation, it facilitates the latter in subsequent processing by isolating musical onsets to frame neighborhoods and identifying possible pitch content before and after the true onset sample location
机译:我们提出了一种概率方法,用于对单音分数产生的音乐音频信号进行联合分割和旋律提取。该方法在逐帧短时傅立叶变换(STFT)峰值上运行,从而能够对音符起始,持续时间和音高属性进行计算上有效的推断,同时保留足够的信息以进行音高确定和频谱变化检测。该系统根据瞬态和稳态区域以及音符事件之间可能存在的间隙对音符事件进行显式建模。以这种方式,系统容易地将与音乐发作相关联的突然的频谱变化与其他突然的变化事件区分开。另外,该方法可以通过对音符到音符依赖性进行建模来合并旋律上下文。该方法已成功应用于包括混响,连音演奏风格有效的复音,富有表现力的音高变化和背景声音在内的各种钢琴和小提琴录音。尽管该方法没有提供准确的样本分割,但通过将音乐发作隔离到帧邻域并识别真实发作样本位置之前和之后可能的音高内容,可以在后续处理中为后者提供便利

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号