首页> 外文期刊>IEEE transactions on audio, speech and language processing >Direction of Arrival Estimation Using the Parameterized Spatial Correlation Matrix
【24h】

Direction of Arrival Estimation Using the Parameterized Spatial Correlation Matrix

机译:使用参数化空间相关矩阵的到达方向估计

获取原文
获取原文并翻译 | 示例

摘要

The estimation of the direction-of-arrival (DOA) of one or more acoustic sources is an area that has generated much interest in recent years, with applications like automatic video camera steering and multiparty stereophonic teleconferencing entering the market. DOA estimation algorithms are hindered by the effects of background noise and reverberation. Methods based on the time-differences-of-arrival (TDOA) are commonly used to determine the azimuth angle of arrival of an acoustic source. TDOA-based methods compute each relative delay using only two microphones, even though additional microphones are usually available. This paper deals with DOA estimation based on spatial spectral estimation, and establishes the parameterized spatial correlation matrix as the framework for this class of DOA estimators. This matrix jointly takes into account all pairs of microphones, and is at the heart of several broadband spatial spectral estimators, including steered-response power (SRP) algorithms. This paper reviews and evaluates these broadband spatial spectral estimators, comparing their performance to TDOA-based locators. In addition, an eigenanalysis of the parameterized spatial correlation matrix is performed and reveals that such analysis allows one to estimate the channel attenuation from factors such as uncalibrated microphones. This estimate generalizes the broadband minimum variance spatial spectral estimator to more general signal models. A DOA estimator based on the multichannel cross correlation coefficient (MCCC) is also proposed. The performance of all proposed algorithms is included in the evaluation. It is shown that adding extra microphones helps combat the effects of background noise and reverberation. Furthermore, the link between accurate spatial spectral estimation and corresponding DOA estimation is investigated. The application of the minimum variance and MCCC methods to the spatial spectral estimation problem leads to better resolution than that of the - - commonly used fixed-weighted SRP spectrum. However, this increased spatial spectral resolution does not always translate to more accurate DOA estimation
机译:近年来,随着自动摄像机转向和多方立体声电话会议等应用进入市场,对一个或多个声源的到达方向(DOA)的估计引起了人们的极大兴趣。 DOA估计算法受背景噪声和混响的影响。通常使用基于到达时间差(TDOA)的方法来确定声源到达的方位角。尽管通常可以使用其他麦克风,但基于TDOA的方法仅使用两个麦克风即可计算每个相对延迟。本文基于空间谱估计进行DOA估计,并建立参数化空间相关矩阵作为此类DOA估计器的框架。该矩阵共同考虑了所有成对的麦克风,并且是包括响应响应功率(SRP)算法在内的几种宽带空间频谱估计器的核心。本文回顾并评估了这些宽带空间频谱估计器,并将其性能与基于TDOA的定位器进行了比较。此外,对参数化的空间相关矩阵进行了特征分析,结果表明这种分析使人们可以根据未校准的麦克风等因素来估计信道衰减。该估计将宽带最小方差空间频谱估计器推广到更通用的信号模型。还提出了一种基于多通道互相关系数(MCCC)的DOA估计器。评估中包括了所有建议算法的性能。结果表明,添加额外的麦克风有助于对抗背景噪声和混响的影响。此外,研究了准确的空间光谱估计与相应的DOA估计之间的联系。最小方差和MCCC方法在空间光谱估计问题上的应用比通常使用的固定加权SRP光谱具有更好的分辨率。但是,这种提高的空间光谱分辨率并不总是可以转化为更准确的DOA估计

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号