首页> 外文期刊>IEEE transactions on audio, speech and language processing >Speaker and Session Variability in GMM-Based Speaker Verification
【24h】

Speaker and Session Variability in GMM-Based Speaker Verification

机译:基于GMM的说话人验证中的说话人和会话可变性

获取原文
获取原文并翻译 | 示例

摘要

We present a corpus-based approach to speaker verification in which maximum-likelihood II criteria are used to train a large-scale generative model of speaker and session variability which we call joint factor analysis. Enrolling a target speaker consists in calculating the posterior distribution of the hidden variables in the factor analysis model and verification tests are conducted using a new type of likelihood II ratio statistic. Using the NIST 1999 and 2000 speaker recognition evaluation data sets, we show that the effectiveness of this approach depends on the availability of a training corpus which is well matched with the evaluation set used for testing. Experiments on the NIST 1999 evaluation set using a mismatched corpus to train factor analysis models did not result in any improvement over standard methods, but we found that, even with this type of mismatch, feature warping performs extremely well in conjunction with the factor analysis model, and this enabled us to obtain very good results (equal error rates of about 6.2%)
机译:我们提出了一种基于语料库的说话人验证方法,其中最大似然II标准用于训练说话人和会话变异性的大规模生成模型,我们称之为联合因子分析。注册目标说话者包括在因素分析模型中计算隐藏变量的后验分布,并使用新型的似然率II比率统计量进行验证测试。使用NIST 1999和2000说话人识别评估数据集,我们证明了这种方法的有效性取决于训练语料的可用性,该训练语料与用于测试的评估集非常匹配。使用不匹配语料库训练因子分析模型的NIST 1999评估集上的实验并未对标准方法产生任何改善,但是我们发现,即使使用这种类型的不匹配,特征扭曲也可以与因子分析模型一起很好地执行,这使我们获得了很好的结果(平均错误率约为6.2%)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号