首页> 外文期刊>IEEE transactions on audio, speech and language processing >Robust Feature Extraction for Continuous Speech Recognition Using the MVDR Spectrum Estimation Method
【24h】

Robust Feature Extraction for Continuous Speech Recognition Using the MVDR Spectrum Estimation Method

机译:MVDR频谱估计方法用于连续语音识别的鲁棒特征提取

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a robust feature extraction technique for continuous speech recognition. Central to the technique is the minimum variance distortionless response (MVDR) method of spectrum estimation. We consider incorporating perceptual information in two ways: 1) after the MVDR power spectrum is computed and 2) directly during the MVDR spectrum estimation. We show that incorporating perceptual information directly into the spectrum estimation improves both robustness and computational efficiency significantly. We analyze the class separability and speaker variability properties of the features using a Fisher linear discriminant measure and show that these features provide better class separability and better suppression of speaker-dependent information than the widely used mel frequency cepstral coefficient (MFCC) features. We evaluate the technique on four different tasks: an in-car speech recognition task, the Aurora-2 matched task, the Wall Street Journal (WSJ) task, and the Switchboard task. The new feature extraction technique gives lower word-error-rates than the MFCC and perceptual linear prediction (PLP) feature extraction techniques in most cases. Statistical significance tests reveal that the improvement is most significant in high noise conditions. The technique thus provides improved robustness to noise without sacrificing performance in clean conditions
机译:本文介绍了一种用于连续语音识别的鲁棒特征提取技术。该技术的核心是频谱估计的最小方差无失真响应(MVDR)方法。我们考虑以两种方式合并感知信息:1)在计算MVDR功率谱之后,以及2)直接在MVDR谱估计期间。我们表明,将感知信息直接合并到频谱估计中可以显着提高鲁棒性和计算效率。我们使用Fisher线性判别测度分析了特征的类可分离性和说话人变异性,并表明,与广泛使用的梅尔频率倒谱系数(MFCC)特征相比,这些特征提供了更好的类可分离性和对说话者相关信息的更好抑制。我们在四个不同的任务上评估了该技术:车内语音识别任务,Aurora-2匹配任务,《华尔街日报(WSJ)任务和切换面板任务》。在大多数情况下,新的特征提取技术提供的错误率低于MFCC和感知线性预测(PLP)特征提取技术。统计显着性测试表明,这种改进在高噪声条件下最为显着。因此,该技术在不牺牲清洁条件下的性能的情况下提高了噪声的鲁棒性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号