首页> 外文期刊>IEEE transactions on audio, speech and language processing >Recognition of Dialogue Acts in Multiparty Meetings Using a Switching DBN
【24h】

Recognition of Dialogue Acts in Multiparty Meetings Using a Switching DBN

机译:使用交换式DBN识别多方会议中的对话行为

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the automatic recognition of dialogue acts (DAs) in multiparty conversational speech. We present a joint generative model for DA recognition in which segmentation and classification of DAs are carried out in parallel. Our approach to DA recognition is based on a switching dynamic Bayesian network (DBN) architecture. This generative approach models a set of features, related to lexical content and prosody, and incorporates a weighted interpolated factored language model. The switching DBN coordinates the recognition process by integrating the component models. The factored language model, which is estimated from multiple conversational data corpora, is used in conjunction with additional task-specific language models. In conjunction with this joint generative model, we have also investigated the use of a discriminative approach, based on conditional random fields, to perform a reclassification of the segmented DAs. We have carried out experiments on the AMI corpus of multimodal meeting recordings, using both manually transcribed speech, and the output of an automatic speech recognizer, and using different configurations of the generative model. Our results indicate that the system performs well both on reference and fully automatic transcriptions. A further significant improvement in recognition accuracy is obtained by the application of the discriminative reranking approach based on conditional random fields.
机译:本文涉及多方对话语音中对话行为(DA)的自动识别。我们提出了一种针对DA识别的联合生成模型,其中并行进行了DA的细分和分类。我们的DA识别方法基于交换动态贝叶斯网络(DBN)体系结构。这种生成方法对一组功能进行建模,这些功能与词汇内容和韵律相关,并合并了加权插值因式语言模型。交换DBN通过集成组件模型来协调识别过程。从多个会话数据语料库估计的分解式语言模型与其他特定于任务的语言模型结合使用。结合此联合生成模型,我们还研究了基于条件随机字段的判别方法的使用,以对分段DA进行重新分类。我们已经使用手动转录语音和自动语音识别器的输出,并使用了生成模型的不同配置,对多模式会议记录的AMI语料库进行了实验。我们的结果表明,该系统在参考转录和全自动转录方面均表现良好。通过基于条件随机字段的判别重排序方法的应用,可以进一步提高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号