首页> 外文期刊>IEEE transactions on audio, speech and language processing >Capturing Local Variability for Speaker Normalization in Speech Recognition
【24h】

Capturing Local Variability for Speaker Normalization in Speech Recognition

机译:捕获局部变异性以进行语音识别中的说话人标准化

获取原文
获取原文并翻译 | 示例

摘要

The new model reduces the impact of local spectral and temporal variability by estimating a finite set of spectral and temporal warping factors which are applied to speech at the frame level. Optimum warping factors are obtained while decoding in a locally constrained search. The model involves augmenting the states of a standard hidden Markov model (HMM), providing an additional degree of freedom. It is argued in this paper that this represents an efficient and effective method for compensating local variability in speech which may have potential application to a broader array of speech transformations. The technique is presented in the context of existing methods for frequency warping-based speaker normalization for ASR. The new model is evaluated in clean and noisy task domains using subsets of the Aurora 2, the Spanish Speech-Dat-Car, and the TIDIGITS corpora. In addition, some experiments are performed on a Spanish language corpus collected from a population of speakers with a range of speech disorders. It has been found that, under clean or not severely degraded conditions, the new model provides improvements over the standard HMM baseline. It is argued that the framework of local warping is an effective general approach to providing more flexible models of speaker variability.
机译:新模型通过估计在帧级别应用于语音的频谱和时间扭曲因子的有限集合,减少了局部频谱和时间变化的影响。在局部约束搜索中进行解码时,可以获得最佳的翘曲因子。该模型涉及增强标准隐马尔可夫模型(HMM)的状态,从而提供额外的自由度。本文认为,这代表了一种补偿语音局部变化的有效方法,该方法可能在更广泛的语音转换中具有潜在的应用价值。这项技术是在现有的基于频率扭曲的ASR说话人归一化方法的背景下提出的。使用Aurora 2,西班牙语Speech-Dat-Car和TIDIGITS语料集的子集在干净和嘈杂的任务域中评估新模型。此外,还对从一系列语言障碍患者中收集的西班牙语语料库进行了一些实验。已经发现,在干净或未严重降解的条件下,新模型提供了相对于标准HMM基线的改进。有人认为,局部扭曲框架是一种有效的通用方法,可提供更为灵活的说话人变异性模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号