首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Applications of Statistical Machine Translation Approaches to Spoken Language Understanding
【24h】

Applications of Statistical Machine Translation Approaches to Spoken Language Understanding

机译:统计机器翻译方法在口语理解中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate two statistical methods for spoken language understanding based on statistical machine translation. The first approach employs the source-channel paradigm, whereas the other uses the maximum entropy framework. Starting with an annotated corpus, we describe the problem of natural language understanding as a translation from a source sentence to a formal language target sentence. We analyze the quality of different alignment models and feature functions and show that the direct maximum entropy approach outperforms the source channel-based method. Furthermore, we investigate how both methods perform if the input sentences contain speech recognition errors. Finally, we investigate a new approach to combine speech recognition and spoken language understanding. For this purpose, we employ minimum error rate training which directly optimizes the final evaluation criterion. By combining all knowledge sources in a log-linear way, we show that we can decrease both the word error rate and the slot error rate. Experiments were carried out on two German inhouse corpora for spoken dialogue systems.
机译:在本文中,我们研究了基于统计机器翻译的两种用于口语理解的统计方法。第一种方法采用源通道范式,而另一种方法则使用最大熵框架。从带注释的语料库开始,我们将自然语言理解问题描述为从源句子到正式语言目标句子的翻译。我们分析了不同的对齐模型和特征函数的质量,并表明直接最大熵方法优于基于源通道的方法。此外,我们研究了如果输入句子包含语音识别错误,两种方法如何执行。最后,我们研究了一种将语音识别和口语理解相结合的新方法。为此,我们采用最小错误率训练,该训练可直接优化最终评估标准。通过以对数线性的方式组合所有知识源,我们表明可以降低单词错误率和时隙错误率。在两个德国内部语料库上进行了口语对话系统的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号