首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Blind Spatial Subtraction Array for Speech Enhancement in Noisy Environment
【24h】

Blind Spatial Subtraction Array for Speech Enhancement in Noisy Environment

机译:嘈杂环境中用于语音增强的盲空间减法阵列

获取原文
获取原文并翻译 | 示例

摘要

We propose a new blind spatial subtraction array (BSSA) consisting of a noise estimator based on independent component analysis (ICA) for efficient speech enhancement. In this paper, first, we theoretically and experimentally point out that ICA is proficient in noise estimation under a non-point-source noise condition rather than in speech estimation. Therefore, we propose BSSA that utilizes ICA as a noise estimator. In BSSA, speech extraction is achieved by subtracting the power spectrum of noise signals estimated using ICA from the power spectrum of the partly enhanced target speech signal with a delay-and-sum beamformer. This ldquopower-spectrum-domain subtractionrdquo procedure enables better noise reduction than the conventional ICA with estimation-error robustness. Another benefit of BSSA architecture is ldquopermutation robustness". Although the ICA part in BSSA suffers from a source permutation problem, the BSSA architecture can reduce the negative affection when permutation arises. The results of various speech enhancement test reveal that the noise reduction and speech recognition performance of the proposed BSSA are superior to those of conventional methods.
机译:我们提出了一种新的盲空间减法阵列(BSSA),该阵列由基于独立分量分析(ICA)的噪声估计器组成,可进行有效的语音增强。在本文中,首先,我们在理论上和实验上指出,ICA在非点源噪声条件下比在语音估计上更擅长噪声估计。因此,我们提出了将ICA用作噪声估计器的BSSA。在BSSA中,通过使用延迟和求和波束形成器从部分增强的目标语音信号的功率谱中减去使用ICA估计的噪声信号的功率谱,从而实现语音提取。与具有估计误差鲁棒性的传统ICA相比,这种“功率谱域减法”过程能够更好地降低噪声。 BSSA体系结构的另一个好处是“置换置换的鲁棒性”。尽管BSSA中的ICA部分受到源置换问题的困扰,但BSSA体系结构可以在置换发生时减少负面影响。各种语音增强测试的结果表明,降噪和语音识别所提出的BSSA的性能优于常规方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号