首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >GMM-SVM Kernel With a Bhattacharyya-Based Distance for Speaker Recognition
【24h】

GMM-SVM Kernel With a Bhattacharyya-Based Distance for Speaker Recognition

机译:具有基于Bhattacharyya的距离的GMM-SVM内核,用于说话人识别

获取原文
获取原文并翻译 | 示例

摘要

Among conventional methods for text-independent speaker recognition, Gaussian mixture model (GMM) is known for its effectiveness and scalability in modeling the spectral distribution of speech. A GMM-supervector characterizes a speaker's voice by the GMM parameters such as the mean vectors, covariance matrices and mixture weights. Besides the first-order statistics, it is generally believed that speaker's cues are partly conveyed by the second-order statistics. In this paper, we introduce a Bhattacharyya-based GMM-distance to measure the distance between two GMM distributions. Subsequently, the GMM-UBM mean interval (GUMI) concept is introduced to derive a GUMI kernel which can be used in conjunction with support vector machine (SVM) for speaker recognition. The GUMI kernel allows us to exploit the speaker's information not only from the mean vectors of GMM but also from the covariance matrices. Moreover, by analyzing the Bhattacharyya-based GMM-distance measure, we extend the Bhattacharyya-based kernel by involving both the mean and covariance statistical dissimilarities. We demonstrate the effectiveness of the new kernel on the National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) 2006 dataset.
机译:在用于独立于文本的说话人识别的常规方法中,高斯混合模型(GMM)以其在建模语音频谱分布方面的有效性和可伸缩性而闻名。 GMM超向量通过GMM参数(例如平均向量,协方差矩阵和混合权重)来表征说话者的声音。除了一阶统计之外,通常认为说话者的提示部分地由二阶统计传达。在本文中,我们介绍了一种基于Bhattacharyya的GMM距离来测量两个GMM分布之间的距离。随后,引入了GMM-UBM平均间隔(GUMI)概念,以导出可与支持向量机(SVM)结合使用以进行说话人识别的GUMI内核。 GUMI内核使我们不仅可以从GMM的均值向量中,而且可以从协方差矩阵中利用说话者的信息。此外,通过分析基于Bhattacharyya的GMM距离度量,我们通过涉及均值和协方差统计差异来扩展基于Bhattacharyya的核。我们在国家标准与技术研究院(NIST)说话者识别评估(SRE)2006数据集中证明了新内核的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号