首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >INCA Algorithm for Training Voice Conversion Systems From Nonparallel Corpora
【24h】

INCA Algorithm for Training Voice Conversion Systems From Nonparallel Corpora

机译:用于从非并行语料库训练语音转换系统的INCA算法

获取原文
获取原文并翻译 | 示例

摘要

Most existing voice conversion systems, particularly those based on Gaussian mixture models, require a set of paired acoustic vectors from the source and target speakers to learn their corresponding transformation function. The alignment of phonetically equivalent source and target vectors is not problematic when the training corpus is parallel, which means that both speakers utter the same training sentences. However, in some practical situations, such as cross-lingual voice conversion, it is not possible to obtain such parallel utterances. With an aim towards increasing the versatility of current voice conversion systems, this paper proposes a new iterative alignment method that allows pairing phonetically equivalent acoustic vectors from nonparallel utterances from different speakers, even under cross-lingual conditions. This method is based on existing voice conversion techniques, and it does not require any phonetic or linguistic information. Subjective evaluation experiments show that the performance of the resulting voice conversion system is very similar to that of an equivalent system trained on a parallel corpus.
机译:大多数现有的语音转换系统,特别是那些基于高斯混合模型的语音转换系统,都需要从源说话者和目标说话者那里获得一组成对的声矢量,以学习其相应的转换功能。当训练语料库是平行的时,在语音上等效的源向量和目标向量的对齐没有问题,这意味着两个说话者都说出相同的训练句子。但是,在某些实际情况下,例如跨语言语音转换,不可能获得这种平行话语。为了提高当前语音转换系统的多功能性,本文提出了一种新的迭代对齐方法,即使在跨语言条件下,该方法也可以将来自不同说话者的非平行话语的语音等效声矢量进行配对。此方法基于现有的语音转换技术,并且不需要任何语音或语言信息。主观评估实验表明,所得语音转换系统的性能与在并行语料库上训练的等效系统的性能非常相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号