首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Volterra Series and State Transformation for Real-Time Simulations of Audio Circuits Including Saturations: Application to the Moog Ladder Filter
【24h】

Volterra Series and State Transformation for Real-Time Simulations of Audio Circuits Including Saturations: Application to the Moog Ladder Filter

机译:包括饱和度在内的音频电路实时仿真的Volterra级数和状态变换:在穆格梯形滤波器中的应用

获取原文
获取原文并翻译 | 示例

摘要

Volterra series are known to be efficient to represent weakly nonlinear systems and the first distortions. Their truncated versions allow one to derive realizations (in the sense of system theory) leading to networks composed of linear filters, sums, and instantaneous products of signals, without instantaneous feedback loops. Nevertheless, if saturation phenomena arise, truncating the series at low order is not sufficient and the convergence can also be lost. In this paper, the case of the Moog ladder filter is investigated. Low-cost simulations based on realizations of Volterra series are given. Their limitations with respect to the amplitude of input signals are exhibited. Methods to increase the validity range and to improve the efficiency of Volterra series expansions are detailed on a single stage of the filter. In particular, changes of states based on the difference between the original state and predictors (parameterized by a tunable delay $T$ ) yield satisfying results. The digital simulation of this system preserves the properties mentioned above. It includes two delay lines (where the delay $T$ can be chosen to be one sample) and nonlinear static functions given by the method.
机译:已知Volterra级数可以有效地表示弱非线性系统和第一个失真。它们的截短形式允许人们(从系统理论的意义上)得出实现,从而实现由线性滤波器,和和以及信号的瞬时乘积组成的网络,而没有瞬时反馈回路。然而,如果出现饱和现象,以低阶截断级数是不够的,并且收敛性也可能丢失。本文研究了穆格梯形滤波器的情况。给出了基于Volterra级数实现的低成本仿真。展示了它们在输入信号幅度方面的局限性。在滤波器的单个阶段上详细介绍了增加有效范围并提高Volterra级数展开效率的方法。特别地,基于原始状态和预测变量之间的差异(通过可调延迟$ T $参数化)的状态变化会产生令人满意的结果。该系统的数字仿真保留了上述特性。它包括两条延迟线(可以将延迟$ T $选择为一个样本)和该方法给出的非线性静态函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号