首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Supervector Dimension Reduction for Efficient Speaker Age Estimation Based on the Acoustic Speech Signal
【24h】

Supervector Dimension Reduction for Efficient Speaker Age Estimation Based on the Acoustic Speech Signal

机译:基于语音信号的有效说话人年龄估计的超向量降维

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel dimension reduction method which aims to improve the accuracy and the efficiency of speaker's age estimation systems based on speech signal. Two different age estimation approaches were studied and implemented; the first, age-group classification, and the second, precise age estimation using regression. These two approaches use the Gaussian mixture model (GMM) supervectors as features for a support vector machine (SVM) model. When a radial basis function (RBF) kernel is used, the accuracy is improved compared to using a linear kernel; however, the computation complexity is more sensitive to the feature dimension. Classic dimension reduction methods like principal component analysis (PCA) and linear discriminant analysis (LDA) tend to eliminate the relevant feature information and cannot always be applied without damaging the model's accuracy. In our study, a novel dimension reduction method was developed, the weighted-pairwise principal components analysis (WPPCA) based on the nuisance attribute projection (NAP) technique. This method projects the supervectors to a reduced space where the redundant within-class pairwise variability is eliminated. This method was applied and compared to the baseline system where no dimensionality reduction is done on the supervectors. The conducted experiments showed a dramatic speed-up in the SVM training testing time using reduced feature vectors. The system accuracy was improved by 5% for the classification system and by 10% for the regression system using the proposed dimension reduction method.
机译:本文提出了一种新的降维方法,旨在提高基于语音信号的说话人年龄估计系统的准确性和效率。研究并实施了两种不同的年龄估算方法;第一个是年龄组分类,第二个是使用回归的精确年龄估算。这两种方法使用高斯混合模型(GMM)超向量作为支持向量机(SVM)模型的特征。当使用径向基函数(RBF)内核时,与使用线性内核相比,精度有所提高;但是,计算复杂度对特征维更敏感。经典的降维方法(例如主成分分析(PCA)和线性判别分析(LDA))往往会消除相关的特征信息,因此无法始终应用而不会损害模型的准确性。在我们的研究中,开发了一种新颖的降维方法,即基于讨厌属性投影(NAP)技术的加权成对主成分分析(WPPCA)。此方法将超向量投影到减少的空间,在其中消除了冗余的类内成对可变性。应用了该方法并将其与没有对超向量进行降维的基线系统进行比较。进行的实验表明,使用减少的特征向量可以大大提高SVM训练测试的速度。使用提出的降维方法,分类系统的系统精度提高了5%,而回归系统的系统精度提高了10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号