首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model
【24h】

Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model

机译:动态正弦模型中的贝叶斯插值和参数估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss–Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.
机译:在本文中,我们提出了一种恢复在音乐和语音应用中经常遇到的非平稳正弦信号的丢失或损坏的观测值的方法。为了对非平稳信号建模,我们使用时变正弦模型,该模型是通过将静态正弦模型扩展为动态正弦模型而获得的。在该模型中,正弦波的同相和正交分量被建模为一阶高斯-马尔可夫过程。在贝叶斯框架中制定了模型参数和缺失观测值的推理方案,该方案基于称为Gibbs采样器的马尔可夫链蒙特卡罗方法。我们专注于动态正弦模型中的参数估计,因为这构成了基于模型的插值的核心。在仿真中,我们首先研究模型的适用性,然后通过将其应用于基于数据包的网络上丢失音频数据包的恢复来演示推理方案。结果表明,所提出的方法是估计未知信号参数和内插由丢失/损坏的信号段组成的间隙的合理推理方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号