首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Analysis of Extended Baum–Welch and Constrained Optimization for Discriminative Training of HMMs
【24h】

Analysis of Extended Baum–Welch and Constrained Optimization for Discriminative Training of HMMs

机译:HMM判别训练的扩展Baum-Welch分析和约束优化

获取原文
获取原文并翻译 | 示例

摘要

Discriminative training is an essential part in building a state-of-the-art speech recognition system. The Extended Baum–Welch (EBW) algorithm is the most popular method to carry out this demanding large-scale optimization task. This paper presents a novel analysis of the EBW algorithm which shows that EBW is performing a specific kind of constrained optimization. The constraints show an interesting connection between the improvement of the discriminative criterion and the Kullback–Leibler divergence (KLD). Based on the analysis, a novel method for controlling the EBW algorithm is proposed. The presented analysis uses decomposed formulae for Gaussian mixture KLDs which correspond to the ones used in the Constrained Line Search (CLS) optimization algorithm. The CLS algorithm for discriminative training is therefore also briefly presented and its connections to EBW studied. Large vocabulary speech recognition experiments are used to evaluate the proposed controlling of EBW, which is shown to outperform the common heuristics in model robustness. Comparison of EBW to CLS also shows differences in robustness in favor to EBW. The constraints for Gaussian parameter optimization as well as the special mixture weight estimation method used with EBW are shown to be the key factors for good performance.
机译:区分培训是构建最新语音识别系统的重要组成部分。扩展Baum-Welch(EBW)算法是执行此苛刻的大规模优化任务的最流行方法。本文对EBW算法进行了新颖的分析,结果表明EBW正在执行一种特定类型的约束优化。约束条件表明,判别标准的改进与Kullback-Leibler散度(KLD)之间存在有趣的联系。在此基础上,提出了一种新的控制电子战预警算法。提出的分析使用了高斯混合KLD的分解公式,这些公式对应于约束线搜索(CLS)优化算法中使用的公式。因此,还将简要介绍用于判别训练的CLS算法,并研究其与EBW的联系。大型词汇语音识别实验用于评估EBW的拟议控制,该模型在模型鲁棒性方面优于常规启发式算法。 EBW与CLS的比较也显示出在稳健性方面的差异,从而有利于EBW。高斯参数优化的约束以及与EBW一起使用的特殊混合权重估算方法被证明是获得良好性能的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号