首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Nonlinear Compensation Using the Gauss–Newton Method for Noise-Robust Speech Recognition
【24h】

Nonlinear Compensation Using the Gauss–Newton Method for Noise-Robust Speech Recognition

机译:高斯-牛顿法进行非线性鲁棒语音识别的非线性补偿

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present the Gauss–Newton method as a unified approach to estimating noise parameters of the prevalent nonlinear compensation models, such as vector Taylor series (VTS), data-driven parallel model combination (DPMC), and unscented transform (UT), for noise-robust speech recognition. While iterative estimation of noise means in a generalized EM framework has been widely known, we demonstrate that such approaches are variants of the Gauss–Newton method. Furthermore, we propose a novel noise variance estimation algorithm that is consistent with the Gauss–Newton principle. The formulation of the Gauss–Newton method reduces the noise estimation problem to determining the Jacobians of the corrupted speech parameters. For sampling-based compensations, we present two methods, sample Jacobian average (SJA) and cross-covariance (XCOV), to evaluate these Jacobians. The proposed noise estimation algorithm is evaluated for various compensation models on two tasks. The first is to fit a Gaussian mixture model (GMM) model to artificially corrupted samples, and the second is to perform speech recognition on the Aurora 2 database. The significant performance improvements confirm the efficacy of the Gauss–Newton method to estimating the noise parameters of the nonlinear compensation models.
机译:在本文中,我们将高斯-牛顿法作为一种统一的方法来估计流行的非线性补偿模型的噪声参数,例如矢量泰勒级数(VTS),数据驱动的并行模型组合(DPMC)和无味变换(UT) ),用于抗噪语音识别。尽管在通用EM框架中对噪声均值的迭代估计已广为人知,但我们证明了这种方法是高斯-牛顿法的变体。此外,我们提出了一种新颖的噪声方差估计算法,该算法与高斯-牛顿原理一致。高斯-牛顿法的制定减少了噪声估计问题,从而确定了语音参数被破坏的雅可比行列式。对于基于采样的补偿,我们提出了两种方法,即样本雅可比平均(SJA)和交叉协方差(XCOV)来评估这些雅可比。针对两种任务的各种补偿模型,对提出的噪声估计算法进行了评估。第一种是将高斯混合模型(GMM)模型拟合到人为破坏的样本,第二种是在Aurora 2数据库上执行语音识别。性能的显着提高证实了高斯-牛顿法在估计非线性补偿模型的噪声参数方面的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号