首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >State-Space Frequency-Domain Adaptive Filtering for Nonlinear Acoustic Echo Cancellation
【24h】

State-Space Frequency-Domain Adaptive Filtering for Nonlinear Acoustic Echo Cancellation

机译:非线性声学回声消除的状态空间频域自适应滤波

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address adaptive acoustic echo cancellation in the presence of an unknown memoryless nonlinearity preceding the echo path. We approach the problem by considering a basis-generic expansion of the memoryless nonlinearity. By absorbing the coefficients of the nonlinear expansion into the unknown echo path, the cascade observation model is transformed into an equivalent multichannel structure, which we further augment with a multichannel first-order Markov model. For the resulting multichannel state-space model, we then derive a recursive Bayesian estimator that takes the form of an adaptive Kalman algorithm in the discrete Fourier transform (DFT) domain. We show that such a recursive estimator can be realized via a stable and structurally efficient multichannel state-space frequency-domain adaptive filter. We demonstrate that our algorithm, which stems from a contained framework, provides effective nonlinear echo cancellation in the presence of continuous double-talk, varying degree of nonlinear distortion, and changes in the echo path.
机译:在本文中,我们针对在回声路径之前存在未知的无记忆非线性的情况下解决自适应声回声消除问题。我们通过考虑无记忆非线性的基本通用展开来解决该问题。通过吸收非线性扩展到未知回波路径的系数,级联观测模型被转换为等效的多通道结构,我们进一步使用多通道一阶马尔可夫模型对其进行了扩充。对于所得的多通道状态空间模型,我们然后推导了递归贝叶斯估计量,该贝叶斯估计量在离散傅立叶变换(DFT)域中采用自适应Kalman算法的形式。我们表明,可以通过稳定且结构有效的多通道状态空间频域自适应滤波器来实现这种递归估计器。我们证明了我们的算法(源自一个包含的框架)在存在连续的双向通话,变化程度的非线性失真和回声路径变化的情况下提供了有效的非线性回声消除。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号