首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >An End-to-End Machine Learning System for Harmonic Analysis of Music
【24h】

An End-to-End Machine Learning System for Harmonic Analysis of Music

机译:用于音乐谐波分析的端到端机器学习系统

获取原文
获取原文并翻译 | 示例

摘要

We present a new system for the harmonic analysis of popular musical audio. It is focused on chord estimation, although the proposed system additionally estimates the key sequence and bass notes. It is distinct from competing approaches in two main ways. First, it makes use of a new improved chromagram representation of audio that takes the human perception of loudness into account. Furthermore, it is the first system for joint estimation of chords, keys, and bass notes that is fully based on machine learning, requiring no expert knowledge to tune the parameters. This means that it will benefit from future increases in available annotated audio files, broadening its applicability to a wider range of genres. In all of three evaluation scenarios, including a new one that allows evaluation on audio for which no complete ground truth annotation is available, the proposed system is shown to be faster, more memory efficient, and more accurate than the state-of-the-art.
机译:我们提出了一种用于流行音乐音频谐波分析的新系统。尽管所提出的系统还额外估计了音序和低音音符,但它的重点是和弦估计。它与竞争方法有两个主要区别。首先,它利用了一种新的改进的音频色谱图表示形式,将人类对响度的感知考虑在内。此外,这是第一个完全基于机器学习的联合估计和弦,琴键和低音音符的系统,不需要专业知识即可调整参数。这意味着它将受益于将来可用的带注释的音频文件的增加,从而将其适用性扩展到更广泛的流派。在所有三种评估方案中,包括一个新的方案,该方案允许对没有完整的地面事实注释可用的音频进行评估,所提出的系统显示出比当前状态更快,更高效,更准确。艺术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号