首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Nonintrusive Quality Assessment of Noise Suppressed Speech With Mel-Filtered Energies and Support Vector Regression
【24h】

Nonintrusive Quality Assessment of Noise Suppressed Speech With Mel-Filtered Energies and Support Vector Regression

机译:具有梅尔滤波能量和支持向量回归的噪声抑制语音的非侵入式质量评估

获取原文
获取原文并翻译 | 示例

摘要

Objective speech quality assessment is a challenging task which aims to emulate human judgment in the complex and time consuming task of subjective assessment. It is difficult to perform in line with the human perception due the complex and nonlinear nature of the human auditory system. The challenge lies in representing speech signals using appropriate features and subsequently mapping these features into a quality score. This paper proposes a nonintrusive metric for the quality assessment of noise-suppressed speech. The originality of the proposed approach lies primarily in the use of Mel filter bank energies (FBEs) as features and the use of support vector regression (SVR) for feature mapping. We utilize the sensitivity of FBEs to noise in order to obtain an effective representation of speech towards quality assessment. In addition, the use of SVR exploits the advantages of kernels which allow the regression algorithm to learn complex data patterns via nonlinear transformation for an effective and generalized mapping of features into the quality score. Extensive experiments conducted using two third party databases with different noise-suppressed speech signals show the effectiveness of the proposed approach.
机译:客观的语音质量评估是一项具有挑战性的任务,旨在模仿人类在复杂且耗时的主观评估任务中的判断。由于人类听觉系统的复杂性和非线性性质,很难按照人类的感知来执行。挑战在于使用适当的特征表示语音信号,然后将这些特征映射到质量得分中。本文提出了一种用于噪声抑制语音质量评估的非侵入性度量。提出的方法的独创性主要在于使用梅尔滤波器组能量(FBE)作为特征,以及使用支持向量回归(SVR)进行特征映射。我们利用FBE对噪声的敏感性,以获得对语音质量评估的有效表示。此外,SVR的使用充分利用了内核的优势,这些内核允许回归算法通过非线性变换来学习复杂的数据模式,从而将特征有效且通用地映射到质量得分中。使用具有不同噪声抑制语音信号的两个第三方数据库进行的广泛实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号