首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Model-Based Speech Enhancement With Improved Spectral Envelope Estimation via Dynamics Tracking
【24h】

Model-Based Speech Enhancement With Improved Spectral Envelope Estimation via Dynamics Tracking

机译:通过动态跟踪改进的频谱包络估计的基于模型的语音增强

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present a model-based approach to enhance noisy speech using an analysis-synthesis framework. Target speech is reconstructed with model parameters estimated from noisy observations. In particular, spectral envelope is estimated by tracking its temporal trajectories in order to improve the noise-distorted short-time spectral amplitude. Initially, we propose an analysis-synthesis framework for speech enhancement based on harmonic noise model (HNM). Acoustic parameters such as pitch, spectral envelope, and spectral gain are extracted from HNM analysis. Spectral envelope estimation is improved by tracking its line spectrum frequency trajectories through Kalman filtering. System identification of Kalman filter is achieved via a combined design of codebook mapping scheme and maximum-likelihood estimator with parallel training data. Complete system design and experimental validations are given in details. Through performance evaluation based on a study of spectrogram, objective measures and a subjective listening test, it is demonstrated that the proposed approach achieves significant improvement over conventional methods in various conditions. A distinct advantage of the proposed method is that it successfully tackles the “musical tones” problem.
机译:在这项工作中,我们提出了一种基于模型的方法,以使用分析综合框架来增强嘈杂的语音。使用从嘈杂观测中估计的模型参数重建目标语音。特别地,通过跟踪频谱的时间轨迹来估计频谱包络,以便改善噪声失真的短时频谱幅度。最初,我们提出了一种基于谐波噪声模型(HNM)的语音增强分析综合框架。从HNM分析中提取声学参数,例如音高,频谱包络和频谱增益。通过卡尔曼滤波跟踪其线谱频率轨迹,可以改善频谱包络估计。卡尔曼滤波器的系统识别是通过将密码本映射方案与具有并行训练数据的最大似然估计器组合设计来实现的。详细给出了完整的系统设计和实验验证。通过对频谱图的研究,客观测量和主观听觉测试,对性能进行评估,结果表明,所提出的方法在各种条件下均比常规方法有显着改进。所提出的方法的一个明显的优点是它成功地解决了“音乐音调”问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号