首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Simultaneous Speech Detection With Spatial Features for Speaker Diarization
【24h】

Simultaneous Speech Detection With Spatial Features for Speaker Diarization

机译:具有空间特征的同时语音检测,可实现说话人区分

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous speech poses a challenging problem for conventional speaker diarization systems. In meeting data, a substantial amount of missed speech error is due to speaker overlaps, since usually only one speaker label per segment is assigned. Furthermore, simultaneous speech included in training data can lead to corrupt speaker models and thus worse segmentation performance. In this paper, we propose the use of three spatial cross-correlation-based features together with spectral information for speaker overlap detection on distant microphones. Different microphone-pair data are fused by means of principal component analysis. We have obtained an improvement of the speaker diarization system over the baseline by discarding overlap segments from model training and assigning two speaker labels to them according to likelihoods in Viterbi decoding. In experiments conducted on the AMI Meeting corpus, we achieve a relative DER reduction of 11.2% and 17.0% for single- and multi-site data, respectively. The improvement of clustering with techniques such as beamforming and TDOA-feature stream also leads to a higher effectiveness of the overlap labeling algorithm. Preliminary experiments with NIST RT data show DER improvement on the RT'09 meeting recordings as well.
机译:对于传统的说话者二分系统,同时语音提出了一个具有挑战性的问题。在会议数据中,大量的语音错误是由于说话者重叠而引起的,因为通常每个段只分配一个说话者标签。此外,训练数据中包含的同时语音可能会导致说话人模型损坏,从而导致分割效果变差。在本文中,我们提出将三个基于空间互相关的特征与频谱信息一起用于远距离麦克风上的扬声器重叠检测。通过主成分分析将不同的麦克风对数据融合在一起。通过在模型训练中丢弃重叠片段,并根据维特比解码中的可能性为它们分配两个说话者标签,我们在基线上实现了说话人区分系统的改进。在AMI Meeting语料库上进行的实验中,对于单站点和多站点数据,我们分别实现了相对DER降低11.2%和17.0%。利用诸如波束成形和TDOA特征流之类的技术来改善聚类效果还可以提高重叠标记算法的有效性。使用NIST RT数据进行的初步实验表明,RT'09会议记录的DER也得到了改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号