首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Word-Based Naïve Bayes Classifier for Confidence Estimation in Speech Recognition
【24h】

A Word-Based Naïve Bayes Classifier for Confidence Estimation in Speech Recognition

机译:基于词的朴素贝叶斯分类器用于语音识别中的置信度估计

获取原文
获取原文并翻译 | 示例

摘要

Confidence estimation has been largely used in speech recognition to detect words in the recognized sentence that have been likely misrecognized. Confidence estimation can be seen as a conventional pattern classification problem in which a set of features is obtained for each hypothesized word in order to classify it as either correct or incorrect. We propose a smoothed naïve Bayes classification model to profitably combine these features. The model itself is a combination of word-dependent (specific) and word-independent (generalized) naïve Bayes models. As in statistical language modeling, the purpose of the generalized model is to smooth the (class posterior) estimates given by the specific models. Our classification model is empirically compared with confidence estimation based on posterior probabilities computed on word graphs. Empirical results clearly show that the good performance of word graph-based posterior probabilities can be improved by using the naïve Bayes combination of features.
机译:置信度估计已广泛用于语音识别中,以检测已识别句子中可能被​​误识别的单词。置信度估计可以看作是常规的模式分类问题,其中为每个假设的单词获取一组特征,以便将其分类为正确或不正确。我们提出了一种平滑的朴素贝叶斯分类模型,以有利地组合这些特征。该模型本身是依赖单词的(特定的)和不依赖单词的(广义的)朴素贝叶斯模型的组合。与统计语言建模一样,广义模型的目的是平滑特定模型给出的(后验类)估计。我们将分类模型与基于单词图计算出的后验概率的置信度估计进行经验比较。实证结果清楚地表明,通过使用朴素的贝叶斯特征组合,可以改善基于词图的后验概率的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号