首页> 外文期刊>IEEE transactions on audio, speech and language processing >Harmonic Adaptive Latent Component Analysis of Audio and Application to Music Transcription
【24h】

Harmonic Adaptive Latent Component Analysis of Audio and Application to Music Transcription

机译:音频的谐波自适应潜在成分分析及其在音乐转录中的应用

获取原文
获取原文并翻译 | 示例

摘要

Recently, new methods for smart decomposition of time-frequency representations of audio have been proposed in order to address the problem of automatic music transcription. However those techniques are not necessarily suitable for notes having variations of both pitch and spectral envelope over time. The HALCA (Harmonic Adaptive Latent Component Analysis) model presented in this article allows considering those two kinds of variations simultaneously. Each note in a constant-Q transform is locally modeled as a weighted sum of fixed narrowband harmonic spectra, spectrally convolved with some impulse that defines the pitch. All parameters are estimated by means of the expectation-maximization (EM) algorithm, in the framework of Probabilistic Latent Component Analysis. Interesting priors over the parameters are also introduced in order to help the EM algorithm converging towards a meaningful solution. We applied this model for automatic music transcription: the onset time, duration and pitch of each note in an audio file are inferred from the estimated parameters. The system has been evaluated on two different databases and obtains very promising results.
机译:近来,已经提出了用于音频的时频表示的智能分解的新方法,以解决自动音乐转录的问题。但是,那些技术不一定适合于音调和频谱包络随时间变化的音符。本文介绍的HALCA(谐波自适应潜在成分分析)模型允许同时考虑这两种变化。恒定Q变换中的每个音符在本地建模为固定窄带谐波频谱的加权和,频谱上与定义音高的某些脉冲进行卷积。在概率潜在成分分析框架中,所有期望值均通过期望最大化(EM)算法进行估计。还引入了有关参数的有趣先验,以帮助EM算法收敛到有意义的解决方案。我们将此模型应用于自动音乐转录:音频文件中每个音符的开始时间,持续时间和音高是根据估计的参数推断出来的。该系统已经在两个不同的数据库上进行了评估,并获得了非常有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号