首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Multi-Microphone Noise Reduction Based on Orthogonal Noise Signal Decompositions
【24h】

Multi-Microphone Noise Reduction Based on Orthogonal Noise Signal Decompositions

机译:基于正交噪声信号分解的多麦克风降噪

获取原文
获取原文并翻译 | 示例

摘要

Multi-microphone noise reduction plays an increasing and important role in acoustic communication systems. Existing multichannel noise reduction filters are commonly computed based on a single noise covariance matrix. Recently, an orthogonal noise signal decomposition was proposed that uses a single noise signal as a reference. Using this decomposition, it was possible to reformulate the noise reduction problem and derived a multichannel noise reduction filter that allows a tradeoff between the noise that is coherent and incoherent with respect to the reference signal. In this contribution, we analyze the previously proposed decomposition and propose an orthogonal decomposition that is based on a rank-one projection of all noise signals. The projection is chosen such that the total variance of the coherent noise component is maximized. To further improve the separation between coherent noise and incoherent noise, a rank-Q projection of the observed noise signals is proposed. The decomposed noise covariance matrix is then used to derive a minimum variance distortionless response beamformer that allows a tradeoff between coherent and incoherent noise reduction, and to form a constraint matrix for a linearly constrained minimum variance beamformer. The results of the performance evaluation demonstrate the advantage of the proposed decompositions over the previously proposed decomposition.
机译:多麦克风降噪在声学通信系统中起着越来越重要的作用。通常基于单个噪声协方差矩阵来计算现有的多通道降噪滤波器。近来,提出了使用单个噪声信号作为参考的正交噪声信号分解。使用这种分解,可以重新构造降噪问题,并推导了一个多通道降噪滤波器,该滤波器允许在相对于参考信号相干和不相干的噪声之间进行权衡。在此贡献中,我们分析了先前提出的分解,并提出了基于所有噪声信号的秩一投影的正交分解。选择投影,以使相干噪声分量的总方差最大化。为了进一步改善相干噪声和非相干噪声之间的分离,提出了观察到的噪声信号的秩Q投影。然后,将分解后的噪声协方差矩阵用于导出最小方差无失真响应波束成形器,该波束成形器允许在相干噪声和非相干噪声降低之间进行权衡,并为线性约束的最小方差波束成形器形成约束矩阵。性能评估的结果证明了建议的分解方法优于先前建议的分解方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号