首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Joint Optimization of Base and Enhancement Layers in Scalable Audio Coding
【24h】

Joint Optimization of Base and Enhancement Layers in Scalable Audio Coding

机译:可伸缩音频编码中基础层和增强层的联合优化

获取原文
获取原文并翻译 | 示例

摘要

Current scalable audio coders typically optimize performance at a particular layer without regard to impact on other layers, and are thus unable to provide a performance trade-off between different layers. In the particular case of MPEG Scalable Advanced Audio Coding (S-AAC) and Scalable-to-Lossless (SLS) coding, the base-layer is optimized first followed by successive optimization of higher layers, which ensures optimality of the base-layer but results in a scalability penalty that progressively increases with the enhancement layer index. The ability to trade-off performance between different layers enables alignment to the real world requirement for audio quality commensurate with the bandwidth afforded by a user. This work provides the means to better control the performance tradeoffs, and the distribution of the scalability penalty, between the base and enhancement layers. Specifically, it proposes an efficient joint optimization algorithm that selects the encoding parameters for each layer while accounting for the rate-distortion costs in all layers. The efficacy of the technique is demonstrated in the two distinct settings of S-AAC, and SLS High Definition Advanced Audio Coding. Objective and subjective tests provide evidence for substantial gains, and represent a significant step toward bridging the gap with the non-scalable coder.
机译:当前的可伸缩音频编码器通常在不影响其他层的情况下优化特定层的性能,因此不能在不同层之间提供性能折衷。在MPEG可伸缩高级音频编码(S-AAC)和可伸缩无损(SLS)编码的特定情况下,首先对基础层进行优化,然后再对高层进行连续优化,这确保了基础层的最优性,但是导致可伸缩性损失,该损失随着增强层索引逐渐增加。可以在不同层之间权衡性能的能力使之能够与现实世界对音频质量的要求保持一致,该要求与用户提供的带宽相称。这项工作提供了一种手段,可以更好地控制基础层和增强层之间的性能折衷以及可伸缩性损失的分配。具体而言,它提出了一种有效的联合优化算法,该算法在考虑所有层的速率失真成本的同时为每个层选择编码参数。该技术的有效性在S-AAC和SLS高清晰度高级音频编码的两个不同设置中得到了证明。主观和主观测试为取得实质性成果提供了证据,并且代表了弥合与不可扩展编码器之间差距的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号