首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Robust Feature Extraction Using Modulation Filtering of Autoregressive Models
【24h】

Robust Feature Extraction Using Modulation Filtering of Autoregressive Models

机译:使用自回归模型的调制滤波进行稳健的特征提取

获取原文
获取原文并翻译 | 示例

摘要

Speaker and language recognition in noisy and degraded channel conditions continue to be a challenging problem mainly due to the mismatch between clean training and noisy test conditions. In the presence of noise, the most reliable portions of the signal are the high energy regions which can be used for robust feature extraction. In this paper, we propose a front end processing scheme based on autoregressive (AR) models that represent the high energy regions with good accuracy followed by a modulation filtering process. The AR model of the spectrogram is derived using two separable time and frequency AR transforms. The first AR model (temporal AR model) of the sub-band Hilbert envelopes is derived using frequency domain linear prediction (FDLP). This is followed by a spectral AR model applied on the FDLP envelopes. The output 2-D AR model represents a low-pass modulation filtered spectrogram of the speech signal. The band-pass modulation filtered spectrograms can further be derived by dividing two AR models with different model orders (cut-off frequencies). The modulation filtered spectrograms are converted to cepstral coefficients and are used for a speaker recognition task in noisy and reverberant conditions. Various speaker recognition experiments are performed with clean and noisy versions of the NIST-2010 speaker recognition evaluation (SRE) database using the state-of-the-art speaker recognition system. In these experiments, the proposed front-end analysis provides substantial improvements (relative improvements of up to 25%) compared to baseline techniques. Furthermore, we also illustrate the generalizability of the proposed methods using language identification (LID) experiments on highly degraded high-frequency (HF) radio channels and speech recognition experiments on noisy data.
机译:主要由于干净的训练和嘈杂的测试条件之间的不匹配,在嘈杂和恶化的信道条件下的说话人和语言识别仍然是一个具有挑战性的问题。在存在噪声的情况下,信号中最可靠的部分是可用于鲁棒特征提取的高能量区域。在本文中,我们提出了一种基于自回归(AR)模型的前端处理方案,该模型以良好的精度表示高能量区域,然后进行调制滤波处理。使用两个可分离的时间和频率AR变换得出频谱图的AR模型。使用频域线性预测(FDLP)导出子带希尔伯特包络的第一个AR模型(​​时间AR模型)。然后是在FDLP包络上应用的光谱AR模型。输出的2-AR模型代表语音信号的低通调制滤波频谱图。通过将两个AR模型划分为不同的模型阶数(截止频率),可以进一步得出带通调制滤波后的频谱图。调制滤波后的频谱图将转换为倒谱系数,并用于嘈杂和混响条件下的说话人识别任务。使用最新的说话人识别系统,使用NIST-2010说话人识别评估(SRE)数据库的干净且嘈杂的版本执行各种说话人识别实验。在这些实验中,与基线技术相比,提出的前端分析提供了实质性的改进(相对改进高达25%)。此外,我们还说明了在高度退化的高频(HF)无线电信道上使用语言识别(LID)实验并在嘈杂数据上进行语音识别实验的方法的一般性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号