...
首页> 外文期刊>The Astrophysical journal >Monte Carlo Simulation Of Particle Interactions At High Dynamic Range:advancing Beyond The Googol
【24h】

Monte Carlo Simulation Of Particle Interactions At High Dynamic Range:advancing Beyond The Googol

机译:高动态范围内粒子相互作用的蒙特卡洛模拟:超越Googol

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a method which extends Monte Carlo studies to situations that require a large dynamic range in particle number. The underlying idea is that, in order to calculate the collisional evolution of a system, some particle interactions are more important than others and require more resolution, while the behavior of the less important, usually of smaller mass, particles can be considered collectively. In this approximation, groups of identical particles, sharing the same mass and structural parameters, operate as one unit. The amount of grouping is determined by the zoom factor-a free parameter that determines on which particles the computational effort is focused. Two methods for choosing the zoom factors are discussed: the "equal-mass method," in which the groups trace the mass density of the distribution, and the "distribution method," which additionally follows fluctuations in the distribution. Both methods achieve excellent correspondence with analytic solutions to the Smoluchowski coagulation equation. The grouping method is furthermore applied to simulations involving runaway kernels, where the particle interaction rate is a strong function of particle mass, and to situations that include catastrophic fragmentation. For the runaway simulations, previous predictions for the decrease of the runaway timescale with the initial number of particles N are reconfirmed, extending N to 10~(160). Astrophysical applications include modeling of dust coagulation, planetesimal accretion, and the dynamical evolution of stars in large globular clusters. The proposed method is a powerful tool to compute the evolution of any system where the particles interact through discrete events, with the particle properties characterized by structural parameters.
机译:我们提出了一种方法,该方法将蒙特卡洛研究扩展到要求粒子数具有较大动态范围的情况。基本思想是,为了计算系统的碰撞演化,某些粒子间的相互作用比其他粒子更重要,并且需要更高的分辨率,而次要粒子(通常质量较小)的行为可以集中考虑。在这种近似中,共享相同质量和结构参数的相同粒子组作为一个单元运行。分组的数量由缩放因子决定,缩放因子是一个自由参数,它确定计算工作量集中在哪些粒子上。讨论了选择缩放因子的两种方法:“等质量方法”(其中的组跟踪分布的质量密度)和“分布方法”(该方法另外跟踪分布的波动)。两种方法均与Smoluchowski凝固方程的解析解具有极好的对应性。该分组方法还适用于涉及失控内核的模拟,其中粒子的相互作用速率是粒子质量的强大函数,并且还适用于包括灾难性碎片的情况。对于失控模拟,再次确认了对于失控时间尺度随初始粒子数N减少的先前预测,将N扩展到10〜(160)。天文学的应用包括对尘埃凝结,行星状增生以及大型球状星团中恒星的动力学演化建模。所提出的方法是计算粒子通过离散事件相互作用的任何系统的演化的有力工具,粒子的特性以结构参数为特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号