首页> 美国卫生研究院文献>other >Fluorescence Correlation Spectroscopy Simulations of Photophysical Phenomena and Molecular Interactions: A Molecular Dynamics/Monte Carlo Approach
【2h】

Fluorescence Correlation Spectroscopy Simulations of Photophysical Phenomena and Molecular Interactions: A Molecular Dynamics/Monte Carlo Approach

机译:物理现象和分子相互作用的荧光相关光谱模拟:分子动力学/蒙特卡洛方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fluorescence correlation spectroscopy (FCS) is being applied increasingly to study diffusion and interactions of fluorescently labeled macromolecules in complex biological systems. Fluctuations in detected fluorescence, δF(t), are expressed as time-correlation functions, G(τ), and photon-count histograms, P(k;ΔT). Here, we developed a generalized simulation approach to compute G(τ) and P(k;ΔT) for complex systems with arbitrary geometry, photophysics, diffusion, and macromolecular interactions. G(τ) and P(k;ΔT) were computed from δF(t) generated by a Brownian dynamics simulation of single-molecule trajectories followed by a Monte Carlo simulation of fluorophore excitation and detection statistics. Simulations were validated by comparing analytical and simulated G(τ) and P(kT) for diffusion of noninteracting fluorophores in a three-dimensional Gaussian excitation and detection volume. Inclusion of photobleaching and triplet-state relaxation produced significant changes in G(τ) and P(kT). Simulations of macromolecular interactions and complex diffusion were done, including transient fluorophore binding to an immobile matrix, cross-correlation analysis of interacting fluorophores, and anomalous sub- and superdiffusion. The computational method developed here is generally applicable for simulating FCS measurements on systems complicated by fluorophore interactions or molecular crowding, and experimental protocols for which G(τ) and P(kT) cannot be computed analytically.
机译:荧光相关光谱法(FCS)被越来越多地用于研究荧光标记的大分子在复杂生物系统中的扩散和相互作用。检测到的荧光δF(t)的波动表示为时间相关函数G(τ)和光子计数直方图P(k;ΔT)。在这里,我们开发了一种通用的仿真方法来计算具有任意几何形状,光物理,扩散和大分子相互作用的复杂系统的G(τ)和P(k;ΔT)。 G(τ)和P(k;Δ T )由单分子布朗动力学模拟生成的δF t )计算得出轨迹,然后进行荧光激发和检测统计数据的蒙特卡洛模拟。通过比较分析和模拟的 G τ)和 P k T )用于非相互作用荧光团在三维高斯激发和检测体积中的扩散。包含光漂白和三重态弛豫会在 G τ)和 P k )中产生显着变化 T )。进行了大分子相互作用和复杂扩散的模拟,包括瞬态荧光团与固定基质的结合,相互作用荧光团的互相关分析以及异常的亚扩散和超扩散。本文开发的计算方法通常适用于在荧光团相互作用或分子拥挤复杂的系统上模拟FCS测量,以及 G τ)和 P的实验方案 k T )无法解析计算。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(110),4
  • 年度 -1
  • 页码 1896–1906
  • 总页数 26
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

  • 入库时间 2022-08-21 11:33:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号