首页> 外文期刊>The Astrophysical journal >HYDRA: AN ADAPTIVE-MESH IMPLEMENTATION OF P~3M-SPH
【24h】

HYDRA: AN ADAPTIVE-MESH IMPLEMENTATION OF P~3M-SPH

机译:HYDRA:P〜3M-SPH的自适应网格实现

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present an implementation of smoothed particle hydrodynamics (SPH) in an adaptive particle-particle-particle-mesh (AP~3M) algorithm. The code evolves a mixture of purely gravitational particles and gas particles. SPH gas forces are calculated in the standard way from near neighbors. Gravitational forces are calculated using the mesh refinement scheme described by Couchman (1991). The AP~3M method used in the code gives rise to highly accurate forces. The maximum pairwise force error is set by an input parameter. For a maximum pairwise force error of 7.7%, the rms error in a distribution of particles is ≈0.3%. The refined-mesh approach significantly increases the efficiency with which the neighbor particles required for the SPH forces are located. The code, " Hydra," retains the principal desirable properties of previous P~3M-SPH implementations ; speed under light clustering, naturally periodic boundary conditions, and easy control of the accuracy of the pairwise interparticle forces. Under heavy clustering the cycle time of the new code is only 2-3 times slower than for a uniform particle distribution, overcoming the principle disadvantage of previous implementations—a dramatic loss of efficiency as clustering develops. A 1000 step simulation with 65,536 particles (half dark, half gas) runs in one day on a Sun Sparc10 workstation. The choice of time integration scheme is investigated in detail. We find that a simple single-step predictor-corrector type integrator, which is equivalent to Leapfrog for velocity-independent forces, is the most efficient. A method for generating an initial distribution of particles by allowing a uniform temperature gas of SPH particles to relax within a periodic box is presented. The average SPH density that results varies by ≈ ±1.3%. This is the fluctuation amplitude on roughly the Nyquist frequency; for smaller wavenumbers the fluctuations have lower amplitudes. We present a modified form of the Layzer-Irvine equation which includes the thermal contribution of the gas together with radiative cooling. The SPH and time integration schemes were tested and compared by running a series of tests of sound waves and shocks. These tests were also used to derive time-step constraints sufficient to ensure both energy and entropy conservation. We have compared the results of simulations of spherical infall and collapse with varying numbers of particles. We show that many thousands of particles are necessary in a halo to correctly model the collapse. As a further test, the cluster simulation of Thomas & Couchman (1992) has been rerun with the new code, which includes a number of improvements in the SPH implementation. We find close agreement except in the core properties of the cluster which are strongly affected by entropy scatter in the older simulation. This demonstrates the crucial importance of conserving entropy in SPH simulations.
机译:我们提出了一种在自适应粒子-粒子-粒子-网格(AP〜3M)算法中的平滑粒子流体动力学(SPH)的实现。该代码演变出纯重力粒子和气体粒子的混合物。 SPH气体压力是从附近的邻居以标准方式计算的。使用Couchman(1991)描述的网格细化方案计算引力。代码中使用的AP〜3M方法会产生高度精确的力。最大成对力误差由输入参数设置。对于最大成对力误差为7.7%,颗粒分布的均方根误差约为0.3%。细化网格方法显着提高了SPH力所需的相邻粒子的定位效率。代码“ Hydra”保留了以前的P〜3M-SPH实现的主要期望属性;光聚集下的自然速度,自然周期性边界条件和容易控制的成对粒子间力的精度。在重集群的情况下,新代码的循环时间仅比均匀的粒子分布慢2-3倍,克服了以前实现的原理缺点-随着集群的发展,效率急剧下降。在Sun Sparc10工作站上,一天内可以进行65 536个粒子(半暗,半气体)的1000步模拟。详细研究了时间积分方案的选择。我们发现,最简单的单步预测器-校正器类型积分器是最有效的,它等效于Leapfrog的速度无关力。提出了一种通过使SPH颗粒的均匀温度的气体在周期盒内松弛来产生颗粒的初始分布的方法。产生的平均SPH密度变化≈±1.3%。这是大约奈奎斯特频率上的波动幅度;对于较小的波数,波动幅度较小。我们提出了Layzer-Irvine方程的修改形式,其中包括气体的热影响以及辐射冷却。通过运行一系列声波和冲击测试,对SPH和时间积分方案进行了测试和比较。这些测试还用于导出足以确保能量和熵守恒的时间步约束。我们已经比较了具有不同数量的颗粒的球面倒塌和倒塌的模拟结果。我们表明,光晕中需要成千上万个粒子才能正确地模拟塌陷。作为进一步的测试,Thomas&Couchman(1992)的集群模拟已使用新代码重新运行,其中包括对SPH实现的许多改进。我们发现,除了簇的核心属性(在较早的模拟中受熵散射的强烈影响)之外,它们之间存在着密切的一致性。这证明了在SPH仿真中保持熵至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号