...
首页> 外文期刊>Acta astronautica >Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach
【24h】

Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach

机译:空间环境中多体系统的动力学;拉格朗日与欧拉方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The paper describes the motion of a multibody in space environment: by space environment we mean space-varying gravity, gradient forces, control forces, if any. (1) In the Eulerian approach, the motion of each individual member is described through kinematic parameters: (a) position of its CM with respect to the inertial frame; (b) rotation of the members with respect to the inertial frame; amplitude of the elastic modes (free-free). The said parameters are of different order of magnitudes, and therefore an adequate separation of them is highly desirable. Therefore, individual positions are replaced by overall position of the system (of the order of Earth's radius), and by the motion of each bar relative to it (of the order of members dimension), and for modes amplitudes modal equations are used. It should be noted, however, that the above-described motion parameters are redundant, and we must introduce: (a) reactions between members, (b) equations of compatibility of the same number of reactions. In summary, (ⅰ) the set of unknowns is: motion parameters, reactions, control forces; (ⅱ) the equations are equilibrium, compatibility, control. Control is introduced by prescribing the motion of some members, produced by control moments of forces. By simple matrix algebra, it is reduced to a system with motion parameters (overall + local) only. (2) In the Lagrangian approach, motion parameters are selected which are already consistent with compatibility conditions. In this case, as customarily, the expression of kinetic, potential, elastic energy is written, and the application of Lagrangian techniques provides directly the solving system. No reactions and compatibility equations appear here, however; for control purpose, prescribed motion law must again be introduced. Comparison of the two approaches shows perfect agreement (as one should have expected), since they are both exact models referring to the same physical system. In general, however, the Eulerian approach lends itself to a better understanding of physical facts, in particular, of the entity of the reactions and of the corresponding structural stresses.
机译:本文描述了多体在空间环境中的运动:通过空间环境,我们指的是随空间变化的重力,梯度力,控制力(如果有)。 (1)在欧拉方法中,每个单个构件的运动通过运动学参数描述:(a)CM相对于惯性系的位置; (b)构件相对于惯性框架的旋转;弹性模式的振幅(自由-自由)。所述参数具有不同的数量级,因此非常需要将它们充分分离。因此,单个位置被系统的整体位置(地球半径的数量级),每个杆相对于它的运动(成员尺寸的数量级)所替换,并且对于模式,使用振幅模态方程。但是,应该注意的是,上述运动参数是多余的,我们必须引入:(a)成员之间的反应,(b)相同数量反应的相容性方程。总而言之,(ⅰ)未知数集为:运动参数,反作用力,控制力; (ⅱ)方程是平衡,相容,可控的。通过规定一些构件的运动来引入控制,这些运动是由力的控制力矩产生的。通过简单的矩阵代数,它可以简化为仅具有运动参数(整体+局部)的系统。 (2)在拉格朗日方法中,选择了已经与兼容性条件一致的运动参数。在这种情况下,通常会写出动能,势能,弹性能的表达式,拉格朗日技术的应用直接提供了求解系统。但是,这里没有反应和相容性方程式出现。出于控制目的,必须再次引入规定的运动定律。两种方法的比较显示出完美的一致性(正如人们所期望的那样),因为它们都是引用同一物理系统的精确模型。但是,一般来说,欧拉方法有助于更好地理解物理事实,尤其是反应实体和相应的结构应力。

著录项

  • 来源
    《Acta astronautica》 |2004年第1期|p.1-24|共24页
  • 作者

    P. Santini; P. Gasbarri;

  • 作者单位

    Associazione Italiana di Aeronautica e Astronautica, Universita di Roma 'La Sapienza', Via Nazionale, Rome, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航天(宇宙航行);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号