...
首页> 外文期刊>Acta astronautica >High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations
【24h】

High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations

机译:湍流爆轰中三点碰撞和未燃烧气穴成因的高分辨率数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A key issue in pulse detonation engine development is better understanding of the detonation structure and its propagation mechanism. Thus, in the present work the turbulent structure of an irregular detonation is studied through very high resolution numerical simulations of 600 points per half reaction length. The aim is to explore the nature of the transverse waves during the collision and reflection processes of the triple point with the channel walls. Consequently the formation and consumption mechanism of unreacted gas pockets is studied. Results show that the triple point and the transverse wave collide simultaneously with the wall. The strong transverse wave switches from a primary triple point before collision to a new one after reflection. Due to simultaneous interaction of the triple point and the transverse wave with the wall in the second half of the detonation cell, a larger high-pressurised region appears on the wall. During the reflection the reaction zone detaches from the shock front and produces a pocket of unburned gas. Three mechanisms found to be of significance in the re-initiation mechanism of detonation at the end of the detonation cell; i: energy resealed via consumption of unburned pockets by turbulent mixing ii: compression waves arise due to collision of the triple point on the wall which helps the shock to jump abruptly to an overdriven detonation iii: drastic growth of the Richtmyer-Meshkov instability causing a part of the front to accelerate with respect to the neighbouring portions. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved.
机译:脉冲爆震发动机发展的关键问题是对爆震结构及其传播机理的更好理解。因此,在本工作中,通过每半个反应长度600个点的非常高分辨率的数值模拟,研究了不规则爆轰的湍流结构。目的是探索三重点与通道壁的碰撞和反射过程中横波的性质。因此,研究了未反应气穴的形成和消耗机理。结果表明,三点和横波与壁同时碰撞。强横波从碰撞前的主要三重点切换到反射后的新三重点。由于在爆轰室的后半部分中三点和横波与壁同时发生相互作用,因此在壁上会出现较大的高压区域。在反射过程中,反应区从激波前部脱离,并产生一袋未燃烧的气体。在爆轰单元末端的爆轰重新启动机制中,发现了三种重要的机制: i:湍流混合通过消耗未燃烧的口袋而重新密封了能量ii:由于壁上的三点碰撞而产生压缩波,这有助于使冲击突然跃升为过度驱动的爆燃iii:Richtmyer-Meshkov不稳定性的急剧增长导致前部的一部分相对于相邻部分加速。 (C)2015年IAA。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号