首页> 外文期刊>Astrobiology >Spectral Signatures of Photosynthesis. Ⅰ. Review of Earth Organisms
【24h】

Spectral Signatures of Photosynthesis. Ⅰ. Review of Earth Organisms

机译:光合作用的光谱特征。 Ⅰ。地球生物评论

获取原文
获取原文并翻译 | 示例
       

摘要

Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem Ⅱ with the peak surface incident photon flux density at ~685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.
机译:为什么植物在绿色中反射而在红色中具有“红色边缘”,并且太阳外光合作用应该相同吗?我们提供(1)对光合作用工作原理的简要概述,(2)光合生物多样性,其光收集系统和环境范围的概述,(3)光合表面光谱特征的合成,以及(4)进化关于利用光子能量和行星光环境的光合表面反射光谱的基本原理。我们发现,雪藻,温带藻类,地衣,苔藓,水生植物,最后是陆生维管植物的红色边缘的“近红外(NIR)端”从蓝移到最红。红色边缘较弱或在地衣中倾斜。紫色细菌可能在NIR中显示出倾斜的边缘。在可以得出有关NIR反射作用的可靠结论之前,需要对色素-蛋白质复合物,膜组成和细菌的测量进行更多研究。颜料的吸光度特征与大气光谱透射率特征密切相关:光系统Ⅱ中的P680的峰值表面入射光子通量密度在〜685 nm处,正好在一个氧带在687.5 nm处。红色边缘的NIR端有吸水带和761nm处的氧A带;和细菌叶绿素反应中心波长在大气和水的透射光谱中具有局部最大值。考虑到表面入射光子通量密度谱和光收集中的共振转移,我们提出了一些有关光合色素吸收峰的规则:(1)入射光子通量峰值的波长; (2)核心天线或反应中心颜料可用的最长波长; (3)大气窗口中用于辅助颜料的最短波长。植物吸收较少的绿光可能不是进化历史的低效遗产,但实际上可能满足上述标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号