首页> 外文期刊>Astrobiology >Spectral Signatures of Photosynthesis. Ⅱ. Coevolution with Other Stars and the Atmosphere on Extrasolar Worlds
【24h】

Spectral Signatures of Photosynthesis. Ⅱ. Coevolution with Other Stars and the Atmosphere on Extrasolar Worlds

机译:光合作用的光谱特征。 Ⅱ。与其他恒星的共同进化以及太阳系外世界的大气

获取原文
获取原文并翻译 | 示例
       

摘要

As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O_2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that pho-tosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 μm, 1.1-1.4 μm, 1.5-1.8 μm., and 1.8-2.5 μm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 μm and more likely below 1.1 μm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 μm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 μm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 μm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.
机译:由于地球上的光合作用产生了可以在全球范围内以天文学方式检测到的生命的主要特征,因此寻找太阳系外生命的重点将是光合作用,尤其是与另一颗母恒星一起进化的光合作用。我们对观测到的F2V和K2V,模拟的M1V和M5V恒星以及活跃的M4.5V恒星AD Leo周围的类地行星进行了先前模拟的行星大气成分;我们的场景使用地球的大气成分以及非常低的O_2含量,以防产生强光合作用。利用逐行辐射传递模型,我们计算了行星表面和水下的入射光谱光子通量密度。我们确定了可用的与光合作用有关的辐射带,发现F2V恒星周围行星上的光合色素可能在蓝色的吸收峰中达到峰值,在红橙色的K2V中吸收峰值,在近红外的M星中的吸收峰达到0.93-1.1 μm,1.1-1.4μm,1.5-1.8μm和1.8-2.5μm。然而,水下生物将被限制在短于1.4μm且更可能在1.1μm以下的波长。没有氧合光合作用的M星行星的光子通量将被甲烷限制在1.6μm以上。较长波长的多光系统系列会降低量子产率,但可能允许更长波长的氧气光系统。对于电子跃迁而言,相对于振动能,波长为1.1μm可能是上限。但是,这种截止并不严格,因为这种高能取决于分子的构型。 M颗恒星的行星在可见光下的生产力可能是地球的一半至十分之一,但如果有用的光子扩展到1.1微米以进行无氧光合作用,则M行星的生产力将超过地球。在水下,生物仍将能够抵抗年轻M恒星发出的紫外线耀斑,并获得充足的生长光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号