首页> 外文期刊>Artificial intelligence >Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem
【24h】

Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem

机译:人工免疫系统可以找到NP-硬数分配问题的任意近似值

获取原文
获取原文并翻译 | 示例

摘要

Typical artificial immune system (AIS) operators such as hypermutations with mutation potential and ageing allow to efficiently overcome local optima from which evolutionary algorithms (EAs) struggle to escape. Such behaviour has been shown for artificial example functions constructed especially to show difficulties that EAs may encounter during the optimisation process. However, no evidence is available indicating that these two operators have similar behaviour also in more realistic problems. In this paper we perform an analysis for the standard NP-hard PARTITION problem from combinatorial optimisation and rigorously show that hypermutations and ageing allow AISs to efficiently escape from local optima where standard EAs require exponential time. As a result we prove that while EAs and random local search (RLS) may get trapped on 4/3 approximations, AISs find arbitrarily good approximate solutions of ratio (1+epsilon) within n(epsilon(-(2/epsilon)-1)) (1-epsilon)(-2)e(3)2(2/epsilon)+2n(3)2(2/epsilon)2(n3) 2n3 function evaluations in expectation. This expectation is polynomial in the problem size and exponential only in 1/epsilon. To the best of our knowledge this is the first time performance guarantees of any AIS are proven for a classical combinatorial optimisation problem. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved.
机译:典型的人工免疫系统(AIS)运算符,例如具有突变潜力和衰老的超突变,可以有效地克服进化算法(EA)难以摆脱的局部最优。对于人工构建的示例功能已显示出这种行为,这些功能特别是为了显示EA在优化过程中可能遇到的困难。但是,没有证据表明这两个算子在更实际的问题中也具有相似的行为。在本文中,我们通过组合优化对标准NP-hard PARTITION问题进行了分析,并严格表明超变和时效使AIS能够有效地逃脱标准EA需要指数时间的局部最优。结果证明,虽然EA和随机局部搜索(RLS)可能陷入4/3近似,但AIS却找到n(epsilon(-(2 / epsilon)-1)之比(1 + epsilon)的任意好近似解))(1-ε)(-2)e(3)2(2 /ε)+ 2n(3)2(2 /ε)2(n3)2n3功能评估在期望中。该期望是问题大小的多项式,并且仅以1 /ε为指数。据我们所知,这是首次针对经典组合优化问题证明任何AIS的性能保证。官方版权(C)2019由Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号