首页> 外文期刊>Artificial intelligence for engineering design, analysis and manufacturing >Machining scheme selection based on a new discrete particle swarm optimization and analytic hierarchy process
【24h】

Machining scheme selection based on a new discrete particle swarm optimization and analytic hierarchy process

机译:基于新的离散粒子群优化和层次分析法的加工方案选择

获取原文
获取原文并翻译 | 示例

摘要

The goal of machining scheme selection (MSS) is to select the most appropriate machining scheme for a previously designed part, for which the decision maker must take several aspects into consideration. Because many of these aspects may be conflicting, such as time, cost, quality, profit, resource utilization, and so on, the problem is rendered as a multiobjective one. Consequently, we consider a multiobjective optimization problem of MSS in this study, where production profit and machining quality are to be maximized while production cost and production time must be minimized, simultaneously. This paper presents a new discrete method for particle swarm optimization, which can be widely applied in MSS to find out the set of Pareto-optimal solutions for multiobjective optimization. To deal with multiple objectives and enable the decision maker to make decisions according to different demands on each evaluation index, an analytic hierarchy process is implemented to determine the weight value of evaluation indices. Case study is included to demonstrate the feasibility and robustness of the hybrid algorithm. It is shown from the case study that the multiobjective optimization model can simply, effectively, and objectively select the optimal machining scheme according to the different demands on evaluation indices.
机译:加工方案选择(MSS)的目标是为先前设计的零件选择最合适的加工方案,决策者必须为此考虑多个方面。由于这些方面中的许多方面可能会发生冲突,例如时间,成本,质量,利润,资源利用率等,因此,该问题被视为多目标方面。因此,我们在本研究中考虑了MSS的多目标优化问题,该问题将使生产利润和加工质量最大化,同时必须使生产成本和生产时间最小化。本文提出了一种新的离散粒子群优化方法,该方法可广泛应用于MSS中,以找到多目标优化的帕累托最优解集。为了处理多个目标并使决策者能够根据对每个评估指标的不同需求做出决策,实施了层次分析法来确定评估指标的权重值。包括案例研究以证明混合算法的可行性和鲁棒性。通过案例研究表明,多目标优化模型可以根据评价指标的不同要求,简单,有效,客观地选择最优加工方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号