首页> 外文期刊>Artificial intelligence for engineering design, analysis and manufacturing >Adaptive kinetic structural behavior through machine learning: Optimizing the process of kinematic transformation using artificial neural networks
【24h】

Adaptive kinetic structural behavior through machine learning: Optimizing the process of kinematic transformation using artificial neural networks

机译:通过机器学习的自适应动力学结构行为:使用人工神经网络优化运动转换过程

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, on the basis of significant work carried out, architectural adaption structures are considered to be intelligent entities, able to react to various internal or external influences. Their adaptive behavior can be examined in a digital or physical environment, generating a variety of alternative solutions or structural transformations. These are controlled through different computational approaches, ranging from interactive exploration ones, producing alternative emergent results, to automate optimization ones, resulting in acceptable fitting solutions. This paper examines the adaptive behavior of a kinetic structure, aiming to explore suitable solutions resulting in final appropriate shapes during the transformation process. A machine learning methodology that implements an artificial neural networks algorithm is integrated to the suggested structure. The latter is formed by units articulated together in a sequential composition consisting of primary soft mechanisms and secondary rigid components that are responsible for its reconfiguration and stiffness. A number of case studies that respond to unstructured environments are set as examples, to test the effectiveness of the proposed methodology to be used for handling a large number of input data and to optimize the complex and nonlinear transformation behavior of the kinetic system at the global level, as a result of the units' local activation that influences nearby units in a chaotic and unpredictable manner.
机译:如今,在进行的大量工作的基础上,架构适应结构被认为是能够对各种内部或外部影响做出反应的智能实体。可以在数字或物理环境中检查其自适应行为,从而生成各种替代解决方案或结构转换。可通过不同的计算方法来控制这些方法,从交互式探索方法,产生替代的紧急结果到自动化优化结果,以得到可接受的拟合解决方案。本文研究了动力学结构的自适应行为,旨在探索在转换过程中产生最终合适形状的合适解决方案。实现人工神经网络算法的机器学习方法已集成到建议的结构中。后者是由依次铰接在一起的单元组成的,这些单元由主要的软机制和负责其重新配置和刚度的次要刚性组件组成。以应对非结构化环境的许多案例研究为例,以测试所提出的方法用于处理大量输入数据的有效性,并优化全局动力学系统的复杂和非线性变换行为。单位的局部激活会以一种混乱且不可预测的方式影响附近的单位,从而达到水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号