首页> 外文期刊>Archives of Computational Methods in Engineering >Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics
【24h】

Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics

机译:仿射参数化椭圆强制偏微分方程的简化基近似和后验误差估计:在运输和连续力学中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth "parametric manifold"-dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations-rapid convergence; a posteriori error estimation procedures-rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies-minimum marginal cost for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors.
机译:在本文中,我们考虑了仿射参数化椭圆矫顽偏微分方程的线性函数输出的(递阶,拉格朗日)简化基近似和后验误差估计。基本要素是(原始对偶)Galerkin投影到与平滑“参数流形”维数减少相关的低维空间;用于识别最佳和数值稳定近似值的快速有效的贪婪采样方法-快速收敛;后验误差估计程序-感兴趣的线性函数输出的严格且严格的界限;和离线在线计算分解策略-在实时/嵌入式(例如,参数估计,控制)和多查询(例如,设计优化,多模型/规模)环境中实现高性能所需的最低边际成本。我们给出了导热和对流扩散,不粘流动和线性弹性的说明性结果。输出包括运输速度,附加质量和应力强度因子。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号