首页> 外文期刊>Archives of Computational Methods in Engineering >Domain Decomposition Methods for Domain Composition Purpose: Chimera, Overset, Gluing and Sliding Mesh Methods
【24h】

Domain Decomposition Methods for Domain Composition Purpose: Chimera, Overset, Gluing and Sliding Mesh Methods

机译:用于域组合的域分解方法目的:嵌合体,覆盖,胶合和滑动网格方法

获取原文
获取原文并翻译 | 示例

摘要

Domain composition methods (DCM) consist in obtaining a solution to a problem, from the formulations of the same problem expressed on various subdomains. These methods have therefore the opposite objective of domain decomposition methods (DDM). Indeed, in contrast to DCM, these last techniques are usually applied to matching meshes as their purpose consists mainly in distributing the work in parallel environments. However, they are sometimes based on the same methodology as after decomposing, DDM have to recompose. As a consequence, in the literature, the term DDM has many times substituted DCM. DCM are powerful techniques that can be used for different purposes: to simplify the meshing of a complex geometry by decomposing it into different meshable pieces; to perform local refinement to adapt to local mesh requirements; to treat subdomains in relative motion (Chimera, sliding mesh); to solve multiphysics or multiscale problems, etc. The term DCM is generic and does not give any clue about how the fragmented solutions on the different subdomains are composed into a global one. In the literature, many methodologies have been proposed: they are mesh-based, equation-based, or algebraic-based. In mesh-based formulations, the coupling is achieved at the mesh level, before the governing equations are assembled into an algebraic system (mesh conforming, Shear-Slip Mesh Update, HERMESH). The equation-based counterpart recomposes the solution from the strong or weak formulation itself, and are implemented during the assembly of the algebraic system on the subdomain meshes. The different coupling techniques can be formulated for the strong formulation at the continuous level, for the weak formulation either at the continuous or at the discrete level (iteration-by-subdomains, mortar element, mesh free interpolation). Although the different methods usually lead to the same solutions at the continuous level, which usually coincide with the solution of the problem on the original domain, they have very different behaviors at the discrete level and can be implemented in many different ways. Eventually, algebraic-based formulations treat the composition of the solutions directly on the matrix and right-hand side of the individual subdomain algebraic systems. The present work introduces mesh-based, equation-based and algebraic-based DCM. It however focusses on algebraic-based domain composition methods, which have many advantages with respect to the others: they are relatively problem independent; their implicit implementation can be hidden in the iterative solver operations, which enables one to avoid intensive code rewriting; they can be implemented in a multi-code environment.
机译:域组成方法(DCM)包括从在各个子域上表达的相同问题的公式中获得问题的解决方案。因此,这些方法具有域分解方法(DDM)的相反目的。确实,与DCM相比,这些最后的技术通常应用于匹配网格,因为它们的目的主要在于在并行环境中分配工作。但是,它们有时基于与分解后相同的方法,因此DDM必须重新构成。结果,在文献中,术语DDM具有许多次取代DCM的经历。 DCM是可用于不同目的的强大技术:通过将复杂的几何体分解为不同的可划分网格的片段来简化其网格划分;进行局部优化以适应局部网格需求;处理相对运动中的子域(嵌合体,滑动网格); DCM一词是通用的,它不提供任何线索来说明如何将不同子域上的零散解决方案组合成一个全局子域。在文献中,提出了许多方法:它们是基于网格的,基于方程式的或基于代数的。在基于网格的公式中,在将控制方程组装到代数系统(网格符合,剪切滑移网格更新,HERMESH)之前,在网格级别实现耦合。基于等式的对应项根据强项或弱项本身重构解决方案,并在子域网格上的代数系统组装过程中实现。可以针对连续级别的强配方制定不同的耦合技术,针对连续级别或离散级别的弱配方制定不同的耦合技术(子域迭代,灰浆元素,无网格插值)。尽管不同的方法通常会在连续级别上导致相同的解决方案,这通常与原始域中问题的解决方案相吻合,但它们在离散级别上的行为却大不相同,并且可以以许多不同的方式实现。最终,基于代数的公式直接在各个子域代数系统的矩阵和右手侧处理溶液的组成。本工作介绍了基于网格,基于方程和基于代数的DCM。然而,它着重于基于代数的域合成方法,相对于其他方法,它们具有许多优势:它们相对独立于问题;它们的隐式实现可以隐藏在迭代求解器操作中,从而可以避免大量的代码重写;它们可以在多代码环境中实现。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2017年第4期|1033-1070|共38页
  • 作者单位

    Barcelona Supercomp Ctr BSC CNS, Edificio NEXUS 1,Campus Nord UPC,Gran Capitan 2-4, Barcelona 08034, Spain;

    Barcelona Supercomp Ctr BSC CNS, Edificio NEXUS 1,Campus Nord UPC,Gran Capitan 2-4, Barcelona 08034, Spain;

    Loughborough Univ Technol, Dept Math Sci, Epinal Way, Loughborough LE11 3TU, Leics, England;

    Barcelona Supercomp Ctr BSC CNS, Edificio NEXUS 1,Campus Nord UPC,Gran Capitan 2-4, Barcelona 08034, Spain;

    Barcelona Supercomp Ctr BSC CNS, Edificio NEXUS 1,Campus Nord UPC,Gran Capitan 2-4, Barcelona 08034, Spain;

    Barcelona Supercomp Ctr BSC CNS, Edificio NEXUS 1,Campus Nord UPC,Gran Capitan 2-4, Barcelona 08034, Spain;

    Barcelona Supercomp Ctr BSC CNS, Edificio NEXUS 1,Campus Nord UPC,Gran Capitan 2-4, Barcelona 08034, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号