首页> 外文期刊>Archives of Computational Methods in Engineering >Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials
【24h】

Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials

机译:颗粒功能材料激光加工的建模与仿真

获取原文
获取原文并翻译 | 示例

摘要

The objective of this paper is to focus on one of the "building blocks'' of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53: 1511-1532, 2002; Philos Trans R Soc Math Phys Eng Sci 361(1806): 1021-1043, 2003; Comput Methods Appl Mech Eng 193 (6-8): 679-699, 2004; Comput Methods Appl Mech Eng 196: 3927-3950, 2007; Int J Numer Methods Eng 76: 12501279, 2008; Comput Methods Appl Mech Eng 199: 79-101, 2010; Arch Comput Methods Eng 1-17. doi: 10.1007/s11831-013-9092-6, 2013; Comput Mech Eng Sci 98(3): 261-277, 2014; Comput Mech 54: 171-191, 2014; J Manuf Sci Eng ASME doi: 10.1115/1.4029327, 2015; CIRP J Manuf Sci Technol 10: 77-83, 2015; Comput Mech 56: 613-630, 2015; Introduction to computational micromechanics. Springer, Berlin, 2008; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007; Electromagnetic properties of multi-phase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.
机译:本文的目的是着眼于增材制造技术的“基本要素”之一,即粒子功能化材料的选择性激光加工。在Zohdi进行的一系列工作(Int J Numer Methods Eng 53:1511- 1532,2002; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021-1043,2003; Comput Methods Appl Mech Eng 193(6-8):679-699,2004; Comput Methods Appl Mech Eng 196:3927- 3950,2007; Int J Numer Methods Eng 76:12501279,2008; Comput Methods Appl Mech Eng 199:79-101,2010; Arch Comput Methods Eng 1-17。doi:10.1007 / s11831-013-9092-6,2013; Comput Mech Eng Sci 98(3):261-277,2014; Comput Mech 54:171-191,2014; J Manuf Sci Eng ASME doi:10.1115 / 1.4029327,2015; CIRP J Manuf Sci Technol 10:77-83,2015 ; Comput Mech 56:613-630,2015;计算微力学导论;施普林格,柏林,2008;粒子流的建模和仿真导论; SIAM(工业和应用数学学会),费城, 2007年;多相电介质的电磁特性:建模,理论和计算入门。斯普林格(柏林),2012年),开发了一种激光穿透模型,并结合了使用浸入式微结构方法的时域有限差分法。由于存在光学,热和机械多场耦合,因此开发了一种递归,交错,时间自适应的方案来解析内部微结构场。当系统在相对较小的时间范围内经历较大的变化时,时间步自适应允许数值方案通过细化过程阶段的时间步长来迭代解决物理场的变化,并且当过程相对较慢。空间离散网格是均匀且密集的,足以捕获场中的精细变化。微观结构嵌入到空间离散化中,规则的网格使人们可以生成无矩阵的迭代公式,该公式适合于快速计算,而对内存的需求最少,因此非常适合便携式计算机的计算。提供了数字示例来说明建模和仿真方法,该方法通过设计可直接在计算上实现,以便本领域的研究人员轻松使用。还讨论了基于热松弛的更高级的传导模型,这是快速脉冲激光技术的关键特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号