首页> 外文期刊>Archives of Computational Methods in Engineering >Domain-Specific Language Techniques for Visual Computing: A Comprehensive Study
【24h】

Domain-Specific Language Techniques for Visual Computing: A Comprehensive Study

机译:用于视觉计算的具体域语言技术:综合研究

获取原文
获取原文并翻译 | 示例

摘要

As a part of domain-specific development, Domain-Specific Language (DSL) is widely used in both the academia and industry to solve different aspects of the problems in engineering. A DSL is a customized language whose expressiveness is tailored to a well-defined application domain, so as to offer an effective interface for the domain experts. To mitigate the programming complexity of the General-Purpose Programming Languages, and meanwhile maintain the precise expression towards some exact engineering domains, DSLs present a higher level of abstraction than low-level interfaces, while providing much more flexibility than high-level interfaces. Nevertheless, it lacks a survey to have a systematic overview of the essential commonalities shared by those works. In this survey, we take a brand-new perspective, to categorize the state-of-the-art works into different categories, tailored to three fundamental implementation concerns of DSLs: abstract syntax, concrete syntax, and semantics. Specifically, they are characterized according to their parsing and mapping strategy (external/internal) between the abstract syntax and concrete syntax, the mapping results (textual/graphical symbols), and also the functions they emphasize (modeling, visualizing, etc.). Integrated with the literature, we finally summarized the research overview of DSLs.
机译:作为特定于域的开发的一部分,特定于域的语言(DSL)被广泛用于学术界和行业,以解决工程问题中存在的不同方面。 DSL是一种自定义语言,其富有效力定制到明确的应用程序域,以便为域专家提供有效的界面。为了缓解通用编程语言的编程复杂性,同时保持对某些确切工程域的精确表达,DSL呈现比低级接口更高的抽象级别,同时提供比高级接口更大的灵活性。尽管如此,它缺乏调查,系统概述这些作品共享的基本共性。在本调查中,我们采取了一个全新的视角,将最先进的工作分类为不同类别,量身定制了DSL的三个基本实施问题:抽象语法,具体语法和语义。具体地,它们的特征在于它们的解析和映射策略(外部/内部)在抽象语法和具体语法中,映射结果(文本/图形符号),以及它们强调的功能(建模,可视化等)。与文献相结合,我们终于总结了DSL的研究概述。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2021年第4期|3113-3134|共22页
  • 作者单位

    Nanjing Normal Univ Sch Artificial Intelligence Sch Comp & Elect Informat Nanjing Jiangsu Peoples R China;

    Nanjing Normal Univ Sch Artificial Intelligence Sch Comp & Elect Informat Nanjing Jiangsu Peoples R China;

    Nanjing Normal Univ Sch Artificial Intelligence Sch Comp & Elect Informat Nanjing Jiangsu Peoples R China;

    Nanjing Normal Univ Sch Artificial Intelligence Sch Comp & Elect Informat Nanjing Jiangsu Peoples R China;

    Nanjing Normal Univ Sch Artificial Intelligence Sch Comp & Elect Informat Nanjing Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号