首页> 外文期刊>Archives of Computational Methods in Engineering >Assessment of Structural Monitoring by Analyzing Some Modal Parameters: An Extended Inventory of Methods and Developments
【24h】

Assessment of Structural Monitoring by Analyzing Some Modal Parameters: An Extended Inventory of Methods and Developments

机译:通过分析一些模态参数评估结构监测:制定方法和发展的扩展清单

获取原文
获取原文并翻译 | 示例

摘要

The SHM (structural health monitoring) evaluation consists to determining the modes (resonances) of vibration characteristic of the structure and each of them is represented by its modal parameters which can be obtained experimentally and can be analyzed by different procedures. In the present paper (except subsections 2.1.1, 3.1.1) the coefficients (including the coefficient of displacement) are constant; in this regard, it is made an inventory of some methods of classical and non-classical mathematics with the specific computing scheme. All methods of classical mathematics that were considered, i.e., second-order linear nonhomogeneous differential equations, Laplace operational method, analytical conditional form, approximations with error evaluation (according to contraction principle) are inventoried and then developed-and the first two methods by comparison. As methods of the non-classical mathematics the dyadic wavelet method, the approximation (transform) fuzzy method and the grammatical evolution method are inventoried and then the first is developed. In addition, there are illustrated the calculus techniques by few examples and also computing wavelet coefficients for healthy and damaged structures. Notice that in the subsection 2.1.1 in which the coefficients (including the coefficient of displacement) are considered variable there are some transformations of (non)homogeneous equations in the scaled forms. In addition in the subsection 3.1.1 exact solutions, respectively approximations with error evaluation (according to contraction principle) relative to remarkable equations in literature (including the corresponding standard form) are obtained by using the results of 2.1.1.
机译:SHM(结构健康监测)评估包括确定结构的振动特性的模式(共振),并且它们中的每一个由其模式参数表示,其可以通过实验获得并且可以通过不同的程序分析。在本文中(第2.1.1,3.1.1分除外)系数(包括位移系数)是恒定的;在这方面,它是通过特定计算方案的古典和非古典数学方法的清单。考虑的古典数学方法,即二阶线性非均匀微分方程,LAPLACE操作方法,分析条件形式,与误差评估的近似值(根据收缩原理)进行,然后通过比较开发 - 以及前两种方法。作为非经典数学的方法,通过Dyadic小波法,对近似(变换)模糊方法和语法演化方法进行了清点,然后开发了第一方法。另外,通过少数示例和计算小波系数的微积分技术说明了用于健康和损坏的结构的小波系数。请注意,在第2.1.1的子部分中,其中缩放形式的(非)均匀方程的系数(包括系数)被认为是变量的系数(包括置换系数)。另外,在第3.1.1小节的精确解决方案中,通过使用2.1.1的结果获得相对于文献中的相对于文献(包括相应标准形式)的显着方程的误差评估(根据收缩原理)的近似。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2021年第3期|1575-1590|共16页
  • 作者单位

    Univ Politehn Bucuresti Dept Appl Math Splaiul Independentei 313 Bucharest 060042 Romania|Univ Politehn Bucuresti Ctr Res & Training Innovat Tech Appl Math Engn Ci Splaiul Independentei 313 Bucharest 060042 Romania;

    Univ Politehn Bucuresti Dept Appl Math Splaiul Independentei 313 Bucharest 060042 Romania|Univ Politehn Bucuresti Ctr Res & Training Innovat Tech Appl Math Engn Ci Splaiul Independentei 313 Bucharest 060042 Romania;

    Univ Politehn Bucuresti Dept Math Methods & Models Splaiul Independentei 313 Bucharest 060042 Romania|Univ Politehn Bucuresti Ctr Res & Training Innovat Tech Appl Math Engn Ci Splaiul Independentei 313 Bucharest 060042 Romania;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    34A07; 34A12; 34A25; 42C40; 44A05; 65T60;

    机译:34A07;34A12;34A25;42C40;44A05;65T60;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号