首页> 外文期刊>Archives of Computational Methods in Engineering >A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian-Eulerian Schemes on Moving Unstructured Meshes with Topology Change
【24h】

A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian-Eulerian Schemes on Moving Unstructured Meshes with Topology Change

机译:使用高阶直接Quallic-Lagrangian-Eulerian方案的双曲PDE系统解决方案的统一框架在移动非结构化网格与拓扑变化

获取原文

摘要

In this work, we review the family of direct Arbitrary-Lagrangian-Eulerian (ALE) finite vlume (FV) and discontinuous Galerkin (DG) schemes on moving meshes that at each time step are rearranged by explicitly allowing topology changes, in order to guarantee a robust mesh evolution even for high shear flow and very long evolution times. Two different techniques are presented: a local nonconforming approach for dealing with sliding lines, and a global regeneration of Voronoi tessellations for treating general unpredicted movements. Corresponding elements at consecutive times are connected in space-time to construct closed space-time control volumes, whose bottom and top faces may be polygons with a different number of nodes, with different neighbors, and even degenerate space-time sliver elements. Our final ALE FV-DG scheme is obtained by integrating, over these arbitrary shaped space-time control volumes, the space-time conservation formulation of the governing hyperbolic PDE system: so, we directly evolve the solution in time avoiding any remapping stage, being conservative and satisfying the GCL by construction. Arbitrary high order of accuracy in space and time is achieved through a fully discrete one-step predictor-corrector ADER approach, also integrated with well balancing techniques to further improve the accuracy and to maintain exactly even at discrete level many physical invariants of the studied system. A large set of different numerical tests has been carried out in order to check the accuracy and the robustness of our methods for both smooth and discontinuous problems, in particular in the case of vortical flows.
机译:在这项工作中,我们审查了直接的Armitrary-Lagrangian-eulerian(ALE)有限Vlume(FV)和不连续的Galerkin(DG)方案在移动网格上,在移动网格上通过明确允许拓扑改变来重新排列,以便保证即使对于高剪切流量和非常长的演化时间,也是一个强大的网格演变。提出了两种不同的技术:处理滑动线的局部不合格方法,以及用于治疗一般非预测运动的Voronoi曲面细分的全球再生。连续时间的相应元件在时空中连接以构造闭合的空间控制卷,其底部和顶面可以是具有不同数量的节点的多边形,具有不同的邻居,甚至是退化的时空条形图。我们的最终ALE FV-DG方案是通过集成在这些任意形状的时空控制体积,管理双曲线PDE系统的时空节省节空制定的情况下获得的:所以,我们直接进化解决方案及时避免任何重新映射阶段,存在通过建设保守和满足GCL。通过完全离散的一步预测器校正器涂覆方法实现了空间和时间的完全高阶,还通过良好的平衡技术集成,进一步提高了所学习系统的许多物理不变的准确性和保持完全相同的准确性。 。已经进行了大量不同的数值测试,以检查我们对方法的准确性和稳健性,特别是在涡流的情况下。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号