...
首页> 外文期刊>Applied Surface Science >Growth kinetics and nanoscale structure-property relationships of InN nanostructures on GaN(0001)
【24h】

Growth kinetics and nanoscale structure-property relationships of InN nanostructures on GaN(0001)

机译:生长动力学和纳米级结构 - 甘露纳米结构的结构性质关系(0001)

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of growth rate on the structural, morphological, and electrical properties of InN nanostructures grown on [0001]-oriented GaN substrates by plasma-assisted molecular beam epitaxy is reported. Slowing the growth rate of the nanostructures resulted in extended time for reaching thermodynamically favored crystal facet structures, while at the same time extended the time during which the rf growth plasma can foster damage to the growth. Nanoscale mapping of surface potential and current transport were performed by Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM). The results show that increasing the growth rate by similar to 2.5 times results in more pronounced {10-15} facets of InN nanostructures and decreasing of the residual electron concentration from similar to 5.8 . 10(17) cm(-3) to similar to 2.5 . 10(17) cm(-3). This is explained by the direct bombardment of indium nitride with plasma species and enhanced decomposition, desorption of adatoms, and an increase in surface dangling bonds that creates surface states traps for electrons. The phenomena of electron accumulation in the near-surface region, as well as the current-voltage hysteresis curves under forward biases for InN nanostructures on GaN(0 0 0 1) substrate are disused.
机译:据报道了生长速率对血浆辅助分子束外延产生的荷载纳米结构的结构,形态学和电性能的影响。减慢纳米结构的生长速率导致延长热力学优质的晶面结构的延长时间,同时延长了RF生长等离子体可以促进对生长损害的时间。面部电位和电流传输的纳米级映射由开尔文探针力显微镜(KPFM)和导电原子力显微镜(C-AFM)进行。结果表明,通过类似于2.5倍的增长率,在Inn纳米结构的更明显的{10-15}刻面和与5.8类似的残留电子浓度的降低,增加了增长率。 10(17)厘米(-3)至类似于2.5。 10(17)厘米(-3)。这是通过直接轰击氮化铟与血浆物种的直接轰击,并增强分解,吸附剂的解吸,以及产生用于电子的表面状态陷阱的表面悬空键的增加。近表面区域中的电子积累现象,以及在GaN(0 0 0 1)衬底上的纳米纳米结构的正向偏置下的电流 - 电压滞后曲线被废除。

著录项

  • 来源
    《Applied Surface Science》 |2021年第30期|147997.1-147997.9|共9页
  • 作者单位

    Univ Elect Sci & Technol China Inst Fundamental & Frontier Sci Chengdu 610054 Peoples R China|Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA|Natl Acad Sci Ukraine V Lashkaryov Inst Semicond Phys Pr Nauky 41 UA-03680 Kiev Ukraine;

    Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA;

    Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA;

    Taras Shevchenko Natl Univ Kyiv Dept Phys 64 Volodymyrska St UA-01601 Kiev Ukraine;

    Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA;

    Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA;

    Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA;

    Univ Arkansas Dept Elect Engn Fayetteville AR 72701 USA;

    Univ Elect Sci & Technol China Inst Fundamental & Frontier Sci Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China Inst Fundamental & Frontier Sci Chengdu 610054 Peoples R China;

    Univ Arkansas Inst Nanosci & Engn W Dickson 731 Fayetteville AR 72701 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Molecular beam epitaxy; InN nanostructures; Kelvin probe force microscopy; Surface states; Electron accumulation; Fermi level pinning;

    机译:分子束外延;Inn纳米结构;开尔文探针力显微镜;表面状态;电子积累;费米级钉扎;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号